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Abstract—Location information is becoming increasingly pop-
ular in online social networks, vehicle networks, and online
games. In this paper, we develop a distributed protocol that allows
one party to determine, in a private and secure manner, whether
or not the trajectory of a second party has an intersection with
specific locations of interest. Our design is fully flexible, meaning
that each user is able to specify what kind of datasets they
would like to make visible, and be queried by other users. The
methodology is based on developing a generalized set membership
check approach, using an advanced data structure called the
bloom filter. To demonstrate its feasibility and usability, we offer
three working prototypes, which are implemented on the open-
source homomorphic libraries. Our preliminary results illustrate
the performance and overhead of the proposed approaches as
well as the security of the protocol designs.

Keywords—Location sharing; Bloom filter; Homomorphic en-
cryption; Location security; Location privacy

I. INTRODUCTION

Location data is becoming increasingly popular in online so-
cial networks, vehicle networks, and online games. Companies
like Google and Tesla have heavily invested in autonomous
vehicles that make driving decisions based on real-time highly
accurate location coordinates. On smartphones, more users are
sharing location data, ranging from ride-sharing apps to geo-
graphically enhanced games, such as the Pokemon Go, among
others. In these scenarios, one big concern is the privacy
of users, as unexpected leaks of users’ location trajectories
will allow potentially malicious attacks to gain advantages
in the real world [1]. For example, by knowing what time
a user leaves and returns home each day, a potential third-
party attacker could identify the time periods during which
the user’s home is not occupied. The attacks range from mild
inconveniences such as privacy leaks to much more serious
attacks such as break-ins.

One significant challenge on keeping location data secure
is that we should not trust servers as safe against attacks [2].
Indeed, the significant increase on hacking activities against
servers in recent years means that if we store non-encrypted
data on servers, we will face the risks of data leakage when
the servers are compromised. Perhaps paradoxically, when
building apps that involve location data, servers typically
perform extensive computation on the location traces, making
it necessary for the servers to be able to decrypt data as
needed. For example, Facebook servers need users’ non-
encrypted locations to find nearby friends. Mobile service
provider need users’ rough location to analyze smartphone
usage behaviors [3]. Consequently, we ask, is it possible for
us to maintain the security of location traces while allowing

servers to perform location-specific computations, such as
calculating intersections?

In this paper, we develop a secure computation framework
on location data where the servers have no knowledge of its
original data, i.e., the servers do not keep the private keys
to decrypt data. In this way, compromised servers will not
cause leaked user data. Our work is motivated and enabled
by the recently developed fully homomorphic encryptions,
where recent progress demonstrated it is feasible to perform
meaningful and predictable computations on encrypted data
without decrypting them first [4], [5]. Although existing prim-
itives primarily support simple operations such as bit-wise
operators, additions, and multiplications, in this work, we build
on these homomorphic techniques, and expand them to support
location-specific calculations. Specifically, we focus on one
commonly used building-block operation in location based
data processing: computing the location intersections.

Formally, this computational operation assumes that two
users, Alice and Bob, want to find out if their location datasets
(e.g., collections of singleton locations, or trajectories, or areas
within specified boundaries) have intersections. Figure 1 shows
an overview of the proposed framework, where the actions
taken by Alice, Bob, and the cloud aggregation server are
illustrated. The application model works as follows: Alice first
publishes her location datasets that are encrypted using her
public key, via the cloud aggregation server, so that Bob does
not get access to the plain data directly. Instead, Bob can build
a query based on his location sets and send it to the aggregation
server. Note that as Bob also cares about his privacy, his query
is also encrypted by Alice’s public key. To increase security,
before being encrypted, both Alice’s location dataset and Bob’s
query are inserted into an advanced data structure called the
bloom filter [6], which hashes all location data into binary
strings. In this way, even when the cloud aggregation server
is compromised and the secret key of Alice is hacked at the
same time, the plain location data is still not leaked. Next, the
aggregation server performs the matching step, where Alice’s
encrypted datasets are matched against Bob’s query, and a (still
encrypted) computational result is returned to Alice. Alice can
decide whether there is an intersection between the incoming
query and her datasets by decrypting the result using her own
private key. If there is an intersection, Alice is probably able
to send additional information to Bob.

We now make a few remarks on this computational model.
First, by design, this model ensures that the location datasets
are fully secure, as Alice will only publish the hashed datasets
after encryption. On the side of Bob, the query location data is
also pre-processed using hash functions, and then encrypted
using Alice’s public key. Hence, Alice and Bob never needDOI 10.1109/BDS/HPSC/IDS18.2018.00034 c©2018 IEEE [Preprint Version]
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Fig. 1. Computational model architecture

to share the plaintext of their location trajectories directly.
Second, this computational model is particularly secure against
compromised servers, as the aggregation server does not keep
any plaintext of location trajectories. Finally, only queries that
return positive results (i.e., there are intersections) will lead to
further interactions between Alice and Bob. For queries that
do not return intersections, Alice and Bob do not learn about
each other’s locations.

The contributions of this paper are as follows. First, we
design and propose a fully homomorphic version of the bloom
filter. Second, we develop multiple optimized protocols that
allow one party to determine, in a private and secure manner,
whether or not a second party’s trajectory has an intersection
with the first party. Our design is fully flexible, meaning
that each user is able to specify what kind of datasets (e.g.,
trajectories, areas, and isolated points) they would like to make
visible, and be queried by other users. Third, we offer working
prototypes based on the open-source homomorphic libraries.
Additionally, our preliminary evaluation results on a real-world
dataset, which is collected in a city area on users’ smartphones,
demonstrate the feasibility of the proposed approaches as well
as the security of the protocol designs.

The remaining of this paper is organized as follows. We first
review the related work in Section II, and then we present the
problem formulation and the protocol designs in Section III.
The analysis of security is discussed in Section IV, followed
by the evaluation results in Section V. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

Previous work on keeping location secure has investigated
multiple directions. The first direction, which is called k-
anonymous obfuscation [7], tries to hide the true locations
of users by obfuscating them to the granularity of larger
cells. Such methods, though privacy-aware, make it harder to
develop applications that require the precise locations of users.
Another method is through statistical methods [8], which add
random noise to the samples of individual users, but keep the
global statistical parameters to be more or less reliable. Again,
such methods are only suitable for large-scale statistical needs,
but are not useful where one user’s data needs to be exploited
for application needs, e.g., ride sharing and navigations.

Our proposed approaches fall under the third direction that
performs encryption and decryption methods on the location
data in order to achieve location security and privacy even
when servers may be compromised. One recently developed
encryption scheme suitable for this purpose is the homomor-
phic encryption, which aims to support complex processing
on the encrypted data without decrypting them first, yet still
yielding results that, once decrypted, are meaningful and
correct. The homomorphic encryption has widely inspired
applications [9], [10] of cloud computing.

Existing work in this direction has attempted to apply
homomorphic computing techniques to process location data.
For example, the work in [11] utilized partially homomorphic
encryption to develop a privacy-preserving location proximity
protocol called the InnerCircle. A more recent work [12]
adopted homomorphic encryption to determine an optimal
meeting location for a group of users. Note that all of these
works are implemented based on partially homomorphic en-
cryption methods that only support limited types of operations,
i.e., either addition or multiplication, but not both.

A common task needed in location data processing is related
to checking intersections between private sets. To this end,
previous work has taken advantage of a data structure called
the bloom filter, which supports constant time checkings on
set memberships. For example, the work in [13] proposed the
garbled bloom filters, based on which the oblivious Bloom
intersection is performed to check the private set intersections.
Another work [14] used the bloom filters to represent the
location tags to conduct private proximity tests. In [15],
the bloom filter was combined with partially homomorphic
(Goldwasser−Micali) encryption to design an outsourced pri-
vate set intersection protocol. Because partially homomorphic
encryption only supports either the multiplication operation or
addition operation, the work [15] had to rely on additional
methods, such as the Sander Young Yung technique [16], to
mimic the second operation but with a failure probability.

In contrast to these existing efforts, our work is directly
motivated by the recent progress to develop fully homomor-
phic encryption schemes, such as the well-known scheme
developed by Gentry in 2009 [4]. Compared with partially
homomorphic encryption, this scheme is far more powerful
because it supports both multiplication and addition operations
simultaneously and allows for arbitrary computations on the
encrypted data principally [17]. Inspired by Gentry’s work [4],
several practically feasible fully homomorphic encryption
schemes have been developed [5], [18], [19]. Therefore, we
build our protocol on top of existing fully homomorphic
computing libraries, but we note that future developments
of better paradigms will lead to lower computing cost and
overhead, as well as better security in our system.

III. FRAMEWORK DESIGN

A. Assumptions

Our system design consists of three parties: Alice, Bob, and
the aggregation server. In a typical application scenario, Alice
first selectively publishes her location datasets after encrypting



them with her public key. Later, another user Bob sends
his location queries encrypted by Alice’s public key to the
aggregation server. The server is responsible for performing
computation tasks on the encrypted data, and sends the (still
encrypted) results to Alice. Finally, Alice decides if there is
an intersection by decrypting the results via her own private
key. We assume that Alice and Bob are usually not malicious.
They will follow the protocol correctly, but once the protocol
has ended they can perform any computation they want on
the information (encrypted or otherwise). If Alice finds out
that there is an intersection with the trajectory of the query,
the further interactions between Alice and Bob are out of the
scope of this protocol.

B. Background

As shown in Figure 1, the homomorphic encryption method
and the bloom filter are the two core components in our
protocol. Next, we give a little background information about
the two components.

Homomorphic Encryption: This method takes a founda-
tional role in our system. Briefly, in a fully homomorphic
encryption scheme, the following equations hold true:

m1 +m2 = D(E(m1) + E(m2)) (1)

m1 ∗m2 = D(E(m1) ∗ E(m2)) (2)

In these equations, E() represents the encryption operation,
and D() represents the decryption operation. The computation
that is performed with encrypted values can be translated to
operations in the plain text domain. This allows parties to
perform blind computation on encrypted values.

Bloom Filter: We use standard notations on bloom filters
to represent their operations, as follows:

• m: the size (total number of bits) of the bloom filter;
• k: the number of hash functions;
• n: the number of elements inserted in the bloom filter;
• p: the false positive probability of the bloom filter;
• t: the number of bits flipped to one.

The probability of false positives p given a parameter setting
(m, k, n) can be calculated as:

p ≈ (1− e
−kn
m )k (3)

For a given bloom filter size m and the number of inserted
elements n, the number of hash functions k that minimizes
the false positive is:

k =
m

n
ln 2 (4)

For a given number of inserted elements n and the desired
false positive p, the required number of bits m is:

m = − n ln p

(ln 2)
2 (5)

We use these results later for parameter settings and the
performance analysis of our protocol in Section V.

C. Main Ideas on an Ideal Protocol

The main idea for an ideal protocol works as follows. The
user Alice first inserts all locations that she wants to publish
into a configured bloom filter BFA, by hashing each of these
locations k times into BFA, and flipping corresponding bits
as 1. After all locations are inserted, suppose that t bits at
index a1, a2, . . . , at in BFA have been set as 1s. Our next goal
is to encrypt the bloom filter BFA properly. Specifically, we
observe that its flipped bits can be represented as a polynomial:

f(x) =

t∏
i=1

(x− ai) (6)

Alice then sends the encrypted polynomial f(x) either in the
product form or the expanded form to the aggregation server.
Alice also sends the details on the k hash functions, and the
configuration parameters for BFA. This is necessary as such
information will be later used by Bob for encryption needs.
Even though Alice sends the hash functions, as the f(x) is
encrypted with the public key, the aggregation server has no
way to learn which bits have been set as 1s in BFA.

The aggregation server next waits for the incoming queries.
When doing the query, Bob does not send the raw location data
to the server. Instead, he will first construct a new bloom filter
BFB by obtaining the k hash functions and BFA’s configu-
ration parameters from the server. Then the queried location
is hashed into BFB by flipping k bits at index b1, b2, . . . , bk.
Next, Bob encrypts the k indices as E(b1), E(b2), . . . , E(bk)
using Alice’s public key, and sends them to the server to check
whether BFA has the corresponding bits flipped as 1s by
evaluating f(x) in the encrypted form as E(f(E(bi))). We
know that, based on the nature of this encryption method, the
following equation also holds true:

D(E(f(E(bi)))) = f(bi) (7)

Furthermore, if the bit at index bi in BFA has been flipped
to 1 by Alice earlier, this evaluation result must be 0 based
on the product nature of the polynomial. Therefore, if we
construct another polynomial as

∑k
i=1E(f(E(bi))

2) (we use
square is to prevent the evaluation may sometimes lead to
negative numbers), we have:

H(b) = D(

k∑
i=1

E(f(E(bi))
2)) =

k∑
i=1

f(bi)
2 (8)

Observe that in this equation, only when all bits at the k
indices in BFA have been flipped to 1, the result H(b) will be
0. If H(b) is not 0, then it means that the query is not in the
bloom filter of Alice. We note that the multiplication steps for
computing f(bi)2 is t (based on the factorized form of f(x)).
So the total time of multiplication involved in computing H(b)
is O(k∗t). A large t, like 200, makes such a multiplication im-
practical, because the fast increased size of ciphertexts worsens
the computation overhead greatly. Some techniques, such as
relinearization [20] and approximate eigenvector method [21],
have been proposed to balance the multiplication computation
capacity and computation overhead, but they still do not work
efficiently on a huge multiplication depth in real applications.
Therefore, we design the following optimizations towards



practical protocols containing a greatly reduced number of
multiplication operations. With these optimizations, the proto-
cols can be made practical. We call these protocols practical
optimizations for this reason.

D. Optimization 1: A Lightweight Homomorphic Bloom Filter

We now describe the first working design using fewer addi-
tions and multiplications compared with the idealized design
above. Specifically, it requires k additions, no multiplication
and one decryption to speed up the query. The pseudocode is
shown in Algorithm 1. Alice first inserts her locations into a
bloom filter BFA using k hash functions, then encrypts the
value of every bit v1, v2, . . . , vm in BFA using her public key
PK. The E(v) is then submitted to the aggregation server.
Next, Bob hashes his queried location into BFB , a bloom
filter configured with the same parameters as BFA, where the
bits at index b1, b2, . . . , bk are flipped to 1s. These k indices
are submitted to the server in plaintext, which we think is
still safe because the chosen k cryptographic hash functions
ensure that the server can hardly compute the plain text from
hashed values reversely. The server then sums all elements in
E(v) whose index is in b. At last, the server subtracts k, i.e.,
the length of b, from the sum and returns the ciphertext result
to Alice for decryption using her secret key SK. The whole
evaluation and decryption can be expressed as follows:

plain result = D(

k∑
j=1

E(vbj )− k) (9)

If plain result equals 0, it implies that all values of vbj are
same and equal 1. In other words, all bits at index bj in BFA

are flipped as 1s. So, we can say Bob interacts Alice with a
certain probability of false positive expressed by Equation 3.
Otherwise, they do not intersect at the queried location 100%.

Algorithm 1 A Lightweight Design of the Homomorphic
Bloom Filter

Alice: Bloom Filter Encryption
1: v ← all bits in BFA

2: for i = 1→ m do . m is the size of BFA

3: E(vi)← encrypt vi using PK
4: end for
5: send E(v) to the aggregation server

Bob: Query Encryption
6: b← the indices of bits flipped to 1s in BFB

7: send b to the aggregation server

Sever: Evaluation
8: sum← 0
9: for j = 1→ k do

10: sum← sum+ E(vbj )
11: end for
12: cipher result← sum− k
13: send cipher result to Alice

Alice: Result Decryption
14: plain result← decrypt cipher result using SK

E. Optimization 2: An Improved Homomorphic Bloom Filter

To further improve the security of Bob’s data in optimization
O1, we propose an improved design as shown in Algorithm
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Fig. 2. Bloom filter encrypts a query with the bit-wise encryption scheme

2. Like optimization O1, Alice first inserts her locations into
a bloom filter BFA, where t bits at index a1, a2, . . . , at
have been set as 1s. Then Alice uses her public key PK to
encrypt each negated ai as the encrypted E(−ai), and submits
them to the aggregation server. After launching a query, Bob
first requests Alice’s PK and her k hash functions from the
aggregation server. Then Bob hashes his queried location into
BFB with flipping bits at index b1, b2, . . . , bk to 1s. The
indices are then encrypted as E(b1), E(b2), . . . , E(bk) by PK
and sent to the server. Once receiving the encrypted query
from Bob, the server starts the evaluation based on E(−a)
and E(b). Specifically, for each E(bj), the server performs
E(bj) + E(−ai), where i = 1, 2, . . . , t, and gets t encrypted
results which are then decrypted as D(E(bj) + E(−ai))
respectively by Alice using her secret key SK. Once one of
the t encrypted results of bj equals 0, it means the bit at
index bj in BFA is set as 1. If all bits at index b1, b2, . . . , bk
in BFA are set as 1s, we can conclude Bob has an interaction
with Alice at a certain confidence level which is determined
by BFA’s rate of false positives (we analyze the impact of this
false positive rate later). Otherwise, Bob has no intersection
with Alice at the queried location 100%. Note that in this
design, the information of Bob might still be leaked to Alice
no matter whether they have trajectory intersections or not,
because Alice can obtain the value of bj by:

bj =

∑t
i=1[D(E(bj) + E(−ai)) + ai]

t
(10)

To address this problem, we introduce the randomness
during the evaluation by multiplying E(bj) + E(−ai) by a
random positive integer z. Thus, if D(E(bj)+E(−ai)) equals
0, D((E(bj) +E(−ai)) ∗ z) still equals 0, while other values
vary dramatically.F. Optimization 3: A Bit-wise Homomorphic Bloom Filter

Although the optimization O1 and O2 are feasible, they
are built entirely on top of the underlying homomorphic
encryption scheme, and treat such a scheme as a black box.
The advantage of doing this is that even if we change the
implementation of the homomorphic encryption, these designs
still work without any modification.

However, we also observe that the recently proposed ho-
momorphic encryption schemes are usually based on bit-wise
operations, a feature that is highly similar to the underlying
scheme of bloom filters. This similarity reveals an opportunity
for cross-layer optimization. Specifically, a large number of
homomorphic encryption schemes encrypt data in a bit-wise



Algorithm 2 An Improved Design of the Homomorphic
Bloom Filter

Alice: Bloom Filter Encryption
1: a← the indices where bits are flipped to 1s in BFA

2: for i = 1→ t do
3: E(−ai)← encrypt −ai using PK
4: end for
5: send E(−a) to the aggregation server

Bob: Query Encryption
6: b← the indices where bits are flipped to 1s in BFB

7: for j = 1→ k do
8: E(bj)← encrypt bj using PK
9: end for

10: send E(b) to the aggregation server

Sever: Evaluation
11: for j = 1→ k do
12: for i = 1→ t do
13: cipher resultij ← (E(bj) + E(−ai)) ∗ z
14: end for
15: end for
16: send cipher result to Alice

Alice: Result Decryption
17: for j = 1→ k do
18: flag ← FALSE
19: for i = 1→ t do
20: plain resultij ← decrypt cipher resultij using SK
21: if plain resultij = 0 then
22: flag ← TRUE
23: break
24: end if
25: end for
26: if flag = FALSE then
27: return no intersection
28: end if
29: end for
30: return intersection exists

manner, i.e., each bit in the plaintext is encrypted as a separate
ciphertext. Later, the computation is represented as a boolean
circuit with XOR and AND gates, where the input is the
ciphertext for each encrypted bit. As this mechanism breaks
down an arbitrary computation into bit operations, it may
lead to highly complex circuits. However, in our case, after
transforming the original query operation that involves several
arithmetic operations into the query operation based on bloom
filter, the query operation can be easily decomposed to a single
bit-wise operation.

We represent the bloom filter as a bit array, which can in
turn be represented as an array of integers. We then use the
integer array as encryption input, and are able to naturally
obtain the encrypted bloom filter without using the polynomial
methods as developed in the previous subsections. Specifically,
we re-design the query operation as follows. Suppose Alice
constructs a bloom filter BFA with all her location dataset.
Bob also constructs a bloom filter BFB with only the location
he wants to query. To check whether the location queried by
Bob exists in Alice’s location set, we only need to check if all
bits flipped as 1s in BFB are also set as 1s in BFA, which can
be decomposed into two bit-wise operations. First, perform a
bit-wise AND operation between the two bloom filters to get
a bit array containing wanted bits in BFA. Then, perform a

bit-wise XOR operation between BFB and the resulting bit
array from the last step to check whether all wanted bits are
set as 1. Therefore, the query operation can be expressed as:

query result = BFA&BFB ⊕BFB (11)
If the queried location of Bob exists in Alice’s location set,

the query result in Equation 11 will be zero. (Equation 11
will fail when both bloom filters are empty, i.e., both Alice
and Bob have no trajectory, but this can be easily prevented.)
Furthermore, the operation can be simplified as:

query result = ¬BFA&BFB (12)
Note that the bit-wise NOT operation only requires one input,
thus can be performed locally before the encryption occurs.
This can further reduce the required operation overhead under
encryption form.

With Equation 5, we can calculate the optimal m given a
certain number of elements n and required false positive level
p. We use l to represent the length of an integer. Then the
system needs to encrypt dm/le integers. During the query,
the system needs to calculate encrypted AND operation for
dm/le ∗ l bit. In the last step, the system needs to decrypt
dm/le integers to get the result. Before the computation, both
the Alice and Bob need to send their bloom filter to the server
which is dm/le integers. After the computation has been done,
dm/le integers need to be sent back as the result.

IV. SECURITY ANALYSIS

As the goal of our system is to provide secure and private
protocols for users to share location data without leaking
sensitive information, we now analyze the security of this
system in the presence of semi-honest adversaries in the
perspectives of Alice, Bob, and the aggregation server.

A. Alice’s Privacy and Actions

Observe that in our protocol designs, as long as Alice
correctly encrypts her data with the public key, her security
and privacy is well protected. Therefore, users will not be
discouraged from adopting this service and publishing their
location data due to privacy concerns.

On the other hand, Alice is able to decrypt the results
received from the aggregation server only when there are
intersections. In optimizations O1 and O3, Alice only gets
random integers unless it is zero, indicating that there exists
an intersection. In optimization O2, we introduced intentional
randomness during the evaluation to prevent Alice from iden-
tifying Bob’s position.

B. Bob’s Privacy and Actions

As discussed in Section IV-A, all of the optimizations O1 to
O3 reveal no Bob’s location data to Alice. Next, we consider
whether Bob’s location data is leaked to the aggregation
server. In optimizations O2 and O3, Bob submits his query to
the server in an encrypted way, which guarantees the server
has no access to Bob’s data. In optimization O1, the server
may only obtain Bob’s positions of the bits flipped as 1 but
not his location data in plaintext. Strong cryptographic but
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computationally intensive hash functions, such as password-
based key derivation functions, can make the server’s brute-
force attacks on Bob’s location data less effective.

C. The Aggregation Server’s Actions

We assume that the messages between Alice, Bob, and
the server are encrypted, so the communication channel can
be secure. For optimization O1, the server’s potential brute-
force attack on Bob has been presented in Section IV-B. For
optimizations O2 and O3, even if the server is compromised
and is able to read and write all messages, information is not
leaked to the server due to the very nature of the homomorphic
encryption: all computations are based on encrypted data, not
plain text.

On the other hand, the server is indeed able to log the IP
addresses and user accounts of the users. But we consider this
not a security problem as this is the standard operations of
social networks and apps. Finally, the server may sabotage
the system by refusing to act as the intermediate server.
In practice, this does not often happen as servers lack the
motivations to block users arbitrarily.

V. EVALUATION

In this section, we report experimental results of our homo-
morphic bloom filter protocols based on a real-world smart-
phone mobile dataset. First, we briefly describe the dataset
and the experimental setup. Then, the parameter settings of the
protocols are presented. Finally, we compare the computation
and communication overhead of different protocols.

A. Datasets and Experimental Setup

Our dataset, provided by a telecommunication carrier in
China, consists of thousands of cellular data access records
in a small city. More specifically, this dataset includes 7607
unique users, 121 cell towers, and was collected by from 6:00
pm to 9:00 pm on a Sunday in 2014. Each mobile data access
record contains the coordinate of the cell tower with which the
user communicates. A sequence of records of a user can be
viewed as her history trajectory. We randomly pick users and
generate queries for evaluation. All experiments are performed
on a PC with a 3.10GHz Xeon E3-1220 processor, and 32GB
memory, running Red Hat 4.8.5.
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B. Parameter Settings

We group the users in our dataset into 4 categories, by the
number of unique towers they visited: group 1 (1-15 points),
group 2 (16-30 points), group 3 (31-45 points), group 4 (above
45 points). The default false positive probability is set as 0.1.
According to Equation 4 and Equation 5, we use a 250-bit
bloom filter with 4 hash function for group 1 & 2, a 500-bit
bloom filter with 4 hash function for group 3 & 4.

We implement the optimization O1 and O2 on an integer
encryption system (SEAL) [22], and the optimization O3 on
a binary encryption system based on [18]. In SEAL, we set
polynomial modulus as “1x 1̂024+1′′, coefficient modulus as
FFFFFFF00001 and plaintext modulus as 256. Under this
setting, we calculate the size of a freshly encrypted integer
in SEAL as 1025 ∗ 48 ∗ 2 = 98400 bits, where 1025 is the
number of coefficients in one polynomial, 48 is the number of
bits per coefficient occupies, and 2 is the size of the array
of polynomials. To minimize the difference of the size of
the ciphertext, for the binary encryption system, the security
parameter λ is set as 4, and each bit in the plaintext is
encrypted into a 1024-bit wide ciphertext.

C. Computation Overhead

The computation overhead can be decomposed into three
parts: the encryption time, the query computation time and
decryption time, where the encryption happens at both Alice
and Bob. We randomly perform 20 queries for each group
of users and compare the computation overhead of all three
optimizations in Figure 3.

As we can see, in optimization O1, the encryption overhead
at Alice dominates the overall computation overhead, as Alice
requires to encrypt every bit in her bloom filter BFA. In
optimization O2, the encryption overhead at Alice is much
larger than encryption overhead at Bob, because the number of
integers to be encrypted is determined by the number of flipped
1s in the bloom filter. This also explains why the encryption
overhead increases as the number of location points increase.
Since optimization O2 incurs large intermediate results to be
transmitted back to Alice, the decryption overhead (almost 5
seconds) is high. The computation overhead of optimization
O3 can reach 24 seconds in total (11 seconds for encryption),
which is the highest among all three protocols. We think it
is mainly caused by the setting of the security parameter λ
in our evaluation. The binary homomorphic encryption library
we used requires λ to be set as a power of two. To keep the
size of ciphertext generated by this library and the SEAL on
the same scale, the λ is set as 4 in our experiments. If we
minimize the λ to 2, both the computation overhead and the
ciphertext size decline exponentially.

D. Communication Overhead

The communication overhead mainly consists of three parts:
the ciphertext submitted to the server by Alice, the ciphertext
submitted to the server by Bob, and the computation results
sent from the server to Alice. We use the size of the ciphertext
to be transmitted as the main measure for communication



overhead. We compare the communication overhead of all
three optimizations in Figure 4.
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As we can see that in optimization O1, most of the overhead

happens at sending ciphertext from Alice to the server, as
each bit in the bloom filter is treated as an integer. Thus,
optimizations O2 and O3 beat optimization O1 regarding the
communication overhead generated by the data transmission
from Alice to the server. For optimization O2, besides the
heavy communication overhead at transmitting ciphertext from
Alice to the server, a large number of encrypted intermediate
results sent from the server to Alice also cause a high
communication overhead. Optimization O3, which adopts a
bit-wise encryption scheme, has the lowest communication
overhead with only tens of KB in size. All three parts of
communication overhead for optimization O3 keep the equal,
as the bloom filters of Alice and Bob are always treated as
integer arrays with the same size in the bit-wise computations.
E. Protocol Accuracy

As the bloom filter has possible false positives, we take the
users in group 3 (31-45 points) as an example to demonstrate
the computation overhead in Figure 5 and communication
overhead in Figure 6 given different false positive possibility
p. We set the corresponding number of hash functions k and
the size of bloom filter m based on Equation 4 and Equation 5.

For optimization O1, as the encryption at Alice and trans-
mission of data from Alice to server dominate the computation
overhead and communication overhead respectively, they both
decrease as p increases, whereas other overheads are quite
stable. For optimization O2, both computation overhead and
communication overhead decrease as p increases with the
exception that the encryption overhead at Bob keeps relatively
stable. Similar to optimizations O1 and O2, optimization O3
also shows a trend of decreasing overhead as p increases.

VI. CONCLUSION
In this paper, we investigate the problem on how to keep

users’ location data secure, while at the same time allow-
ing servers to perform basic operations on the data. We
demonstrate secure computation primitives on location data
where the servers should have no knowledge of the plaintext,
i.e., the servers should not even keep the private keys to
decrypt data. In this way, compromised servers will not cause
leaked user data. We have proposed a generalized secure set
membership check framework based on the recently developed

homomorphic encryption and an advanced data structure called
the bloom filter. We also use real-world datasets to evaluate the
proposed practical prototypes, which are implemented on the
open-source homomorphic libraries. The preliminary results
demonstrate the feasibility and efficiency of the proposed
approach as well as the security of the protocol designs.
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