Two-level Index for Truss Community Query in
Large-Scale Graphs

Zheng Lu, Yunhe Feng, Qing Cao
Dept. of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, USA
{zlul2, yfengl4, cao} @utk.edu

Abstract—Recently, there has been a significant interest in the
study of the community search problem in large-scale graphs.
K-truss as a community model has drawn increasing attention
in the literature. In this work, we extend our scope from
the community search problems to a more generalized local
community query problem based on a triangle-connected k-truss
community model. We classify local community query into two
categories, community-level and edge-level query, based on the
information required to process a given query. We design a
two-level index structure that supports both types of queries
with multiple query vertices and arbitrary cohesiveness criteria.
We conduct extensive experiments using real-world large-scale
graphs and compare with the state-of-the-art methods of k-
truss community search. The results show that our method
outperforms the state-of-the-art works in various types of local
k-truss community queries.

Index Terms—Query-dependent community detection, K-truss,
Large-scale graphs

I. INTRODUCTION

Online social networks have seen rapid growth in recent
years and have generated massive data, which has attracted
much research effort on developing advanced data mining
technologies [3], [6], [7], [11], [12]. Graphs are naturally
used to model real-world networks such as social networks.
A well-studied graph problem, known as community search
[11, [4], [5], [9], is to find communities with a query vertex
and a specific cohesiveness measure. The normal procedure of
community search involves making an exhaustive discovery of
all the relevant communities, i.e., enumerating all the edges
in each community, which leads to excessive computation
time/space when edge-level details of communities are not
pertinent. For example, if one wants to use the cohesiveness of
common communities among a set of vertices as a similarity
measure, it is not necessary to discover all the edges in com-
mon communities. The identifiers of common communities
and the cached statistics of each community, e.g., cohesiveness
measure and size, are sufficient. As such, we can generalize
the concept of community search to local community queries,
which are meant to identify common communities among a set
of query vertices given the cohesiveness criteria. Depending on
application requirements, local community queries may or may
not search the edge-level details of each relevant community.

To get a better idea, let’s consider an example application of
team formation. We have a number of skilled workers and we
want to pick some of these workers to form a team to achieve a
certain goal. It is desirable to pick workers that share common

S

/
JTop-level Index
7

Bottorn-level Index

f

/

7

Underlying Graph

Fig. 1. Two-level index structure for k-truss community queries. The top-
level index is a super-graph which represents k-truss communities and their
containment relations. The bottom-level index is a maximum spanning forest
of thetriangle-derived graph that preserves triangle connectivity.

interests or are well acquainted so that they can work well
together to help achieve the goal. For this type of problem,
if we use graph to model the underlying social network and
use graph communities to model common interests, all we
want to know is whether a set of vertices (workers) belong
to some common communities and the cohesiveness of such
communities. We are not interested in who else is in those
common communities. Similar applications include user simi-
larity (if we use graph community to model similarity among
users), tag suggestion (if we use graph communities to model
photo tags), etc. We refer to local community queries that do
not require edge-level details as community-level queries. An
application might also require the details regarding exactly
which edges belong to relevant communities, such as classic
community search queries. We refer to those queries as edge-
level queries.

In this paper, we adopt the k-truss community model based
on triangle connectivity introduced by [5]. Previous works
were mainly focused on the community search problem of a
single query vertex [1], [5]. In this paper, we propose a novel
two-level index structure to support both the community-level
and the edge-level local k-truss community queries of a set of
query vertices. An overview of our two-level index is shown
in Figure 1. The top-level index is a super-graph whose ver-
tices represent unique k-truss communities and whose edges
represent the containment relations between them. For the
bottom-level index, we introduce a new type of graph called
triangle-derived graph that translates triangle connectivity to
edge connectivity for fast k-truss community traversal. We can
use simple union and intersection operations on the top-

978-1-7281-0962-6/19/$31.00 ©2019 TEEE
Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

level index to locate relevant k-truss communities in a given
query, in order to answer community-level queries directly.
Once the identifiers of relevant communities are found, they
can be handed to the bottom-level index to easily answer edge-
level queries.

Our index also supports queries with arbitrary cohesiveness
criteria. Previous works required a specific cohesiveness mea-
surement, e.g., a specific k, to process a query. However, in
reality such criteria may not be available. For example, if we
want to know the common interests among a set of users,
what is a good guess of cohesiveness measure, /ie k in k-
truss community model, to start with? More practical queries
are searching for communities that contain the query vertices
regardless of their cohesiveness, or searching for communities
that contain the query vertices with highest possible cohesive-
ness.

Our contribution can be summarized as follows.

o We generalize the community search problem into the
local community query problem. The generalization com-
prises three aspects. First, we introduce both community-
level and edge-level queries that provide different level
of information for relevant communities. For applications
that only require community-level information such as
team formation or tag suggestion, processing community-
level instead of edge-level can avoid a large amount of re-
dundant computation. Second, we support multiple query
vertices to enable applications that require community
relation among query vertices. Third, we incorporate var-
ious cohesiveness criteria instead of a single cohesiveness
measurement. Especially, we support queries with non-
specific cohesiveness criteria, such as maximum possible
cohesiveness or arbitrary cohesiveness, which is quite
useful in applications.

« We develop a two-level index structure that can efficiently
process both the community-level and the edge-level k-
truss community query for a single query vertex or a set
of query vertices with any given cohesiveness criteria,
using an efficient two step process. We proved our two-
level index is theoretical optimal for both community-
level and edge-level queries.

o We perform extensive experiments on our two-level in-
dex for large-scale real-world graphs and compare our
index structure with the state-of-the-art index structures,
Equitruss and TCP-Index. Experimental results show that
two-level index outperforms the state-of-the-art solutions
on community search query and is an order of magnitude
faster on community-level query.

The rest of this paper is organized as follows. Section II
provides notations and definitions. We design the index struc-
ture and its query process in Section III. The evaluations are
in Section IV. We discuss previous works in Section V and
conclude our work in Section VI.

II. PRELIMINARIES

In our problem, we consider an undirected graph G =
(V,E). An example graph is shown in Figure 2. We de-

| 3truss |
| community

|
,,,,,,, a

4-truss
community

5-truss
community

Fig. 2. An example graph with four k-truss communities

fine the set of neighbors of a vertex v in G as N, =
u€eV:(v,u) € E. We follow definitions of basic concepts
used in [5]. The support of an edge e, , € £ is defined as the
number of triangles an edge belongs to and denoted as s, .

Definition 1 (Trussness): The trussness of a subgraph G’ €
G is the minimum support of edges in G’ plus 2, denoted by
7. BEdge trussness is defined as 7. = maxgreg{Te : € €
Eg}.

For example, in Figure 2, subgraph (1,3,7,8,4) has truss-
ness of 5 as all edges in it have support at least 5 — 2 = 3.
The trussness of edge (1,4) is also 5.

Definition 2 (k-truss): Given a graph G and k > 2, G' C G
is a k-truss if Ve € Egr,se. o > (k —2). G’ is a maximal
k-truss if it is not a subgraph of another k-truss subgraph with
the same trussness k in G.

Two triangles are adjacent if they share a common edge.
Two edges are triangle connected if they belongs to the same
triangle or they can reach each other through a series of
adjacent triangles.

Finally, we define k-truss community based on the definition
of k-truss subgraph and triangle connectivity as follows.

Definition 3 (K-truss community): A k-truss community is
a maximal k-truss with all its edges triangle connected.

Figure 2 shows several examples of k-truss communities.
The whole example graph is a 3-truss community as every
edge has the support of at least 1 and all edges are triangle
connected. Note that there are two separate 4-truss communi-
ties. Because (2, 5) has the support of 1, it cannot belong to a
4-truss. After excluding edge (2, 5), edges in the two 4-trusses
are no longer triangle connected.

III. DESIGN OF TWO-LEVEL INDEX

In this paper, we aim to solve local k-truss community query
problems with a novel two-level index. We first describe the
structure and construction of the two-level index. Then we
show how to process queries with it. We show the flow chart
of index construction and query process in Figure 3.

A. Construction of Two-level Index

The index proposed in this paper contains two levels and
is constructed in a bottom-up manner. The top level is a
super-graph, called community graph, whose vertices represent
unique k-truss communities and edges represent the contain-
ment relations between k-truss communities. The bottom level
is a maximum spanning forest of a triangle-derived graph that
preserves the edge level trussness and triangle connectivity
inside the k-truss communities.

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

Bottom-level Index Top-level Index

Index Construction

o i
[Transform BFS

Stepl: Union-Intersection Step2: Edge Discov.

- T

3-truss

Query Process

== §

) mapéing union intersectioef:)
-
=0 ‘f

N

4-truss

Fig. 3. Index construction and Query process on two-level index

1) MST of Triangle-derived Graph:

The triangle-derived graph of an original graph G° is obtained
by associating a vertex with each edge of G° and connecting
two vertices if the corresponding edges of G° belong to the
same triangle. Then we only store a maximum spanning tree
of the triangle-derived graph, which is enough to store the
triangle connectivity. We show the formal definition of a
triangle-derived graph in Definition 4. We show an example
of the bottom-level index in Figure 4.

Definition 4 (triangle-derived graph): The triangle-derived
graph G' is a weighted undirected graph where each edge in
the original graph G° is represented as a vertex in G*. G* has
an edge e’ which connect vertices vi,v5 € G' if and only
if their corresponding edges ef,e§ € G belong to the same
triangle in G°. The weight of a vertex in G? is defined as the
trussness of its corresponding edge in G°. The weight of an
edge in G' is defined as the lowest trussness of edges in the
corresponding triangle in G°.

Fig. 4. An example of the triangle-derived graph and its maximum spanning
tree (bold edges) of the example graph.

We use G™ to denote the maximum spanning forest of G*
that has been stored as the bottom-level index. To construct
G™, one way to do this is by generating the triangle-derived
graph G* first and then finding a maximum spanning tree of
it. However, this approach is impractical because we need to
sort the edges in G?, which can be an order of magnitude
larger than the original graph G°. We use two methods to
avoid this. First, we find that the highest edge trussness in
real-world graphs is usually small compared to graph size.
Hence, we can use counting sort instead of comparison based
sort. Second, since edge weight in G* represents the minimum
edge trussness in the corresponding triangle in G°, we can sort
edges in the original graph G° to get the sorted order of the
triangles.

We need edge trussness before constructing bottom-level
index, which can be computed using the truss decomposition
algorithm [10], as inputs. The time and space complexi-
ties for constructing the bottom-level index are dominated

by the computation of edge trussness of G°, which are
O(X (u,vyepe min{dy, d,}) and O(|E°|), respectively. Since
G™ is a maximum spanning forest, the bottom-level index
takes O(|V™|) = O(]E°|) space to store it.

Fig. 5. Construction of the community graph from the triangle-derived graph.
The graph on the left is an MST of the triangle-derived graph. The graph on
the right is the community graph. The color of vertices shows the mapping
between graphs.

2) Community Graph:

The top-level index is a super-graph whose vertices represent
unique k-truss communities and edges represent containment
relations between k-truss communities. We call this index
structure the community graph and denote it as G°. Based
on the hierarchical property of k-truss [3], i.e., for k > 2,
each k-truss is the subgraph of a (k — 1)-truss, we have the
formal definition of the community graph in Definition 5. We
show an example of the community graph in Figure 5.

Definition 5 (Community graph): The community graph G°
is a weighted undirected graph that represents each k-truss
community in the original graph G° by a vertex. G¢ has an
edge e¢ connecting vertices v§,v§ € G if and only if the
following two conditions are met for their corresponding k-
truss communities C7, C§ € G°:

o (Y is a subgraph of C or the other way around.

o We assume without loss of generality that CY is a

subgraph of Cg, there is no C§ € G° such that CY is
a subgraph of C¥ and CY¥ is a subgraph of CY.
G° only has vertex weights, which represent the trussness of
the corresponding k-truss communities.

A key property of the community graph is that it is a forest.
For the sake of space, we omit the proofs here. This property
enable us to easily construct the community graph with a
single breath first search (BFS) on the bottom-level index
G™. The traversal algorithm creates a tree in the community
graph G° of each connected component in G™. To construct
a tree in G°, the algorithm iteratively processes vertices in
G™ using the BFS and map them to vertices in G°. The
map between a vertex u”" to a vertex v means the k-truss

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

community represented by v has the highest trussness among
all k-truss communities that contains »"*. For example, in our
example graph in Figure 2, edge 1,4 belongs to three k-truss
communities denoted as Cy, C1, and C' in Figure 5. Since C
has the highest trussness of 5, edge 1,4 is mapped to C5. We
store this mapping in a lookup table H. The detailed index
construction algorithm is shown in Algorithm 1.

Algorithm 1: Top Level Index Construction
Data: Bottom-level index G™(V"™, E™)
Result: Top-level index G°(V¢, E€), Mapping table H
of vertex in G™ (v™) to vertex in G¢ (v°)

for each connected component CC € G™ do

1
2 vl 4 CC.pop();
3 create_super_vertex(seed, null);
4 for u™ € BFS starting at seed do
5 p™ < parent of u™ in BFS;
6 e« (u™, p™);
7 vy < H[p™] //super-vertex of p™
8 while 7,c > 7.m do vf v,
v; — vg.parent ;
9 if ’Tv; < Tem then
10 if 7om = 7,m then
11 VS, 4— create_super_vertex(u, v;);
12 vgl.paremf — v
13 else
14 vS < create_super_vertex(e, vg);
15 vy, < create_super_vertex(u, v);
16 v;/.parent — v
17 else
18 if Tem = Tym then
19 | H[u™] v
20 else
21 ‘ VS, 4— create_super_vertex(u, v;);

22 return G°(V°, E°), H

For each vertex of G™, searching the ancestor super-vertex
in G¢ of its parent vertex in G™ takes O(ky,q,) time, where
Kmaz 18 the highest trussness of k-truss communities in G°.
Since the index construction process is a BFS on a maximum
spanning tree with O(|E°|) vertices, the total construction time
is O(kmaz|E°]). As each vertex in G° represents a k-truss
community in G°, and G° is a forest, the algorithm takes
O(|C°|) space and the index size is O(|C°|), where |C°| is
the number of communities in G°.

B. Query on Two-level Index

We classify k-truss local community queries into two cat-
egories according to the level of information required. We
use a two-step procedure to solve queries. The first step is
an union — intersection procedure on the top-level index
to locate the target communities. The results of this step
can answer community-level queries directly. If edge-level
information is required for a query, e.g., the community search
query, we use bottom-level index to discover all the edges

contained in the target communities. Besides the two query
categories, we also incorporate the ability to add various
cohesiveness criteria for the queries with our two-level index.
We prove our two-level index is theoretical optimal for both
community-level and edge-level queries.

We show the union —intersection procedure in Algorithm
2. Given the two-level index and a lookup table H that maps
edges in the original graph G° (represented by vertices in
G™) to vertices in the community graph G° as input, the
algorithm first iterates through the adjacent edges of each
query vertex. For each edge maps to a vertex in G°, the
algorithm takes the union of itself and its ancestors in G°
(line 8-14). This represents all the communities to which a
query vertex belongs. Then, we take the intersection of the
results of all query vertices which represents the communities
to which all query vertices belong (line 3-7).

The two-level index supports any range of trussness value
as a cohesiveness criterion for a query. There are three
most common cohesiveness criteria: a specific k£ value (k-
truss query), the maximum k value (max-k-truss query) and
any k values (any-k-truss query). With the results of the
unton — intersection procedure, we can easily retrieve target
communities that meet any of these criteria.

Algorithm 2: union — intersection Algorithm.
Data: Original graph G°(V°, E°), Top-level index
G¢(V¢, E°), Mapping table H, Query set @
Result: Subgraph S of G¢ which represents k-truss
communities containing all query vertices

1S« 0;

2 initialized < false;

3 for u® € @ do

4 SS < singlev_subgraph(u®);

5 if linit then S < SS, init + true ;
6 else S+ SNSS;

7 return S

8 function singlev_subgraph (u°)

9 SS « 0

10 for v° € N, do

11 u® < H(u’v)];

12 B <+ ancestors of u¢ in G¢;
13 SS «+ SS|UB;

14 return SS

The time and space complexity for collecting the ancestors
of a given super-vertex is 7. because G° is a forest. To iterate
all the adjacent edges of a query vertex takes) _ N, T(u,)
time and space. Finally, the algorithm needs to find the set of
super-vertices for each query vertex to get a set of common
super-vertices, so the total time and space complexity for the
union — intersection procedure is 3, .o >, e, T(uv)-

The edge-level local k-truss community query requires
information regarding the finest granularity as it needs to
explore the inner edge-level structure of a k-truss community.

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DATASETS
Dataset | Type [Viweel |Eweel | Awec] kmaw
Skitter Internet 1.7M 11.1M 28.8M 68
Sinaweibo Social 58.7M 261.3M 213.0M 80
Orkut Social 3.IM 117.2M 627.6M 78
Bio biological ~ 42.9K 14.5M 3.6B 799
Hollywood Collab. 1.IM 56.3M 4.9B 2209

We use the k-truss community search as a concrete example.
First, the union — intersection algorithm is performed to
obtain the target communities of the query. Then, we collect
the edges contained by each target community by gathering the
edge list of subgraphs of the original graphs stored alongside
the G° vertices.

Each edge in the target communities will only be accessed
exactly once, so the time and space complexity for the search
are | |J C;|, where |J C; is the union of target communities, as
the time to locate the target communities are negligible.

IV. EVALUATIONS

In this section, we evaluate our proposed index structure for
various types of local k-truss community queries on real-world
networks. We compare the two-level index with the state-of-
the-art solutions: the TCP index [5] and the Equitruss index
[1].

We use five real-world graphs of different types shown
in Table 1. To simplify our experiments, we treat them
as undirected, un-weighted graphs and only use the largest
weakly connected component of each graph. All datasets
are publicly available from the Stanford Network Analysis
Project (snap.stanford.edu) and the Network Repository (net-
workrepository.com). We perform 10-truss community queries
and discard vertices with degrees less than 20 as they normally
do not belong to any 10-truss community. We uniformly
partition the rest of vertices according to their degrees into
10 buckets and randomly select 100 sets of query vertices for
each bucket.

A. Single-vertex k-truss community search.

We first evaluate the single-vertex k-truss community search
performance and compare the query time with the TCP index
and the Equitruss index. The results are shown in Figure 6.
The two-level index achieves the best average query time for
all graphs. It has an order of magnitude speedup compared to
the TCP index for all graphs, along with 5% to 400% speedup
compared to the Equitruss index for all graphs. The speed up
is linear as all three indices have the same time complexity
to handle single-vertex k-truss community search queries. The
main reason why the two-level index is faster than the TCP
index is the avoidance of the expensive BFS search during
query time. The reason behind the performance differences of
the two-level index and the Equitruss index on various graphs
lies in the fact that the super-graph size of the two-level index
is much smaller, making it easier to locate target communities.

B. Multiple-vertex k-truss community query.

We first perform community-level multiple-vertex k-truss
queries with both the two-level index and the Equitruss index.
We are not able to perform the same experiment on the TCP
index as there is no easy modification that would enable it to
support multiple-vertex queries. We can see in Figure 7 that
the two-level index outperforms the Equitruss index by several
orders of magnitude. This clearly shows the difference between
the two indices; the Equitruss index has a larger super-graph
and is slower for community-level queries, where only the
super-graph is required.

We then perform both the community-level and the edge-
level multiple-vertex queries with all three basic types of
cohesiveness criteria, i.e., k-truss, max-k-truss and any-k-
truss. We show the results in Figure 8. The average time
for community-level queries spans from 3.4 x 1075 second
to 0.06 seconds. Typically, the average time for community
search queries is much higher than community-level queries
(since one needs to access edge-level information), ranging
from 0.03 to 918.7 seconds depending on the size of the
target communities. Among all the three types of cohesiveness
criteria, any-k-truss edge-level queries usually take the longest
query time.

V. RELATED WORKS

Our work falls in the category of cohesive subgraph mining
[2], [4], [9] such as community detection and community
search. It is closely related to an inspiring work [5], which
introduce the model of k-truss community based on triangle
connectivity. The k-truss concept is first introduced by the
work [3]. However, the original definition of a k-truss lacks the
connectivity constraint so that a k-truss may be a unconnected
subgraph. The notion of triangle connected k-truss communi-
ties is also referred to as k — (2, 3) nucleus in [8] where they
propose an approach based on the disjoint-set forest to speed
up the process of nucleus decomposition.

Due to expensive triangle enumeration, triangle-connected
k-truss communities have slow computation efficiency, espe-
cially for vertices belonging to large k-truss communities. To
speed up the community search based on this model, an index
structure called the TCP index is proposed in [5], where each
vertex holds its maximum spanning forest based on the edge
trussness of their ego-network.

The Equitruss index [1] uses a super-graph based on truss-
equivalence as an index to speed up the single-vertex k-
truss community search. The Equitruss index is similar to our
index structure in the sense that it also uses a super-graph
for the index. However, the vertex in the super-graph of the
Equitruss index is a subgraph of a k-truss community while
an edge represents the triangle connectivity. Our two-level
index contains a more compact super-graph in which a vertex
contains a k-truss community and edges represent the k-truss
community containment relations. The difference in the size of
the super-graph leads to different performance for various local
k-truss community queries, especially for the community-level
queries.

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

itter inaweibo rku io ollywoo
Skitt Si ib s Orkut ’ Bi Holly d
— — ~ 10 aaa4 _ 10 —
z z P IO e O z
2 10° AA,AAA’AA’A 2 10° W g A,A 2 ALLAALAAAS 2 jAassasasad
-3 -8 : g & = =
5 - Y, 510 510! 5
< < < < < —t—t—t—t——
R gl \/ 5 § et 5
> > > > >
< 2 < .. |= 10 < 10° < o°
10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90
Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%)

—— SingleV Query on 2-level index - 4 - SingleV Query on TCP index SingleV Query on Equitruss index

Fig. 6. Comparison of single-vertex k-truss community search of the two-level index, the TCP index and the Equitruss index.

0 Skitter . _ Sinaweibo 5 Orkut) Bio , Hollywood
310 ,.@9999999 @l() 99* 510 soo000094 @10 $c6e666064 @10 $> 666606604
5y @ ol Q O 5y
£ £ %o £ £ £
° ° ° ° p
0 0)) 0
[o 3] [[

10 10° 10 10° 10
10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90
Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%)

—+— MultipleV Community-level Query on 2-level index - © —MultipleV Community-level Query on Equitruss index

Fig. 7. Comparison of multiple-vertex k-truss community-level query of the two-level index and the Equitruss index.

Skitter) Sinaweibo Orkut Bio Hollywood

2 = 10°] 10 O P B 02
2 10 > O.E-IQHAHA—A—&-A,_A_A_.; = 10° = 10
i 5 10 10 g 10%8 LE 0] |
(5] (0] (o) P 9]
on &0 on ~ &0
& P , S i)
15 15 L o 15 o
> > L . g0 > & > i e
<107 T ST ‘ < 105! I < 10!

10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90

Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%) Degree rank (%)

—+—MultipleV K info Query = ——MultipleV Max-K info Query
—&— MultipleV K search Query —4— MultipleV Max-K search Query

MultipleV Any-K info Query
MultipleV Any-K search Query

Fig. 8. Three types (k-truss, max-k-truss, any-k-truss) multiple-vertex (3) community-level k-truss community queries vs. community search.

VI. CONCLUSION

In this work, we designed an two level index structure to
solve local community query problem, which is a generalized
version of the community search problem. We showed that
various types of local community queries can be efficiently
processed on our index with a two step procedure, and our
procedure is theoretically optimal. We conducted extensive
experiments of both the community-level and the edge-level
local k-truss community queries on real-world graphs. Results
show that our index structure outperforms the state-of-the-art
method, Equitruss and TCP-Index. The performance gain is
much noticeable for the community-level queries which can
benefit many real-world applications such as team formation
and tag suggestion.

REFERENCES

[1] E. Akbas and P. Zhao. Truss-based community search: a truss-
equivalence based indexing approach. Proceedings of the VLDB En-
dowment, 10(11):1298-1309, 2017.

D. Bera, F. Esposito, and M. Pendyala. Maximal labelled-clique and
click-biclique problems for networked community detection. In 2018
IEEE Global Communications Conference (GLOBECOM). 1EEE, 2018.
J. Cohen. Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report, 16, 2008.

[2]

[3]

[4] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities
in large graphs. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 991-1002. ACM, 2014.

X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss
community in large and dynamic graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, 2014.
J. Liu, Q. Lian, L. Fu, and X. Wang. Who to connect to? joint
recommendations in cross-layer social networks. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018.

Z. Lu, Y. Feng, and Q. Cao. Decentralized search for shortest path
approximation in large-scale complex networks. In 2017 IEEE In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom). 1EEE, 2017.

A. E. Sariyiice, C. Seshadhri, A. Pinar, and U. V. Catalyiirek. Nucleus
decompositions for identifying hierarchy of dense subgraphs. ACM
Transactions on the Web (TWEB), 11(3):16, 2017.

M. Sozio and A. Gionis. The community-search problem and how
to plan a successful cocktail party. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 939-948. ACM, 2010.

J. Wang and J. Cheng. Truss decomposition in massive networks.
Proceedings of the VLDB Endowment, 5(9):812-823, 2012.

J. Wang, C. Jiang, S. Guan, L. Xu, and Y. Ren. Big data driven similarity
based u-model for online social networks. In GLOBECOM 2017-2017
IEEE Global Communications Conference. IEEE, 2017.

X. Wu, Z. Hu, X. Fu, L. Fu, X. Wang, and S. Lu. Social network de-
anonymization with overlapping communities: Analysis, algorithm and
experiments. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 1151-1159. IEEE, 2018.

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:44:03 UTC from IEEE Xplore. Restrictions apply.

