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DeepWelding: A Deep Learning Enhanced
Approach to GTAW Using Multisource
Sensing Images

Yunhe Feng ", Zongyao Chen

Abstract—Deep learning has great potential to reshape
manufacturing industries. In this article, we present Deep-
Welding, a novel framework that applies deep learning
techniques to improve gas tungsten arc welding process
monitoring and penetration detection using multisource
sensing images. The framework is capable of analyzing
multiple types of optical sensing images synchronously
and consists of three deep learning enhanced consecu-
tive phases: image preprocessing, image selection, and
weld penetration classification. Specifically, we adopted
generative adversarial networks (pix2pix) for image denois-
ing and classic convolutional neural networks (AlexNet)
for image selection. Both pix2pix and AlexNet delivered
satisfactory performance. However, five individual neural
networks with heterogeneous architectures demonstrated
inconsistent generalization capabilities in the classification
phase when holding out multisource images generated with
specific experimental settings. Therefore, two ensemble
methods combining multiple neural networks are designed
to improve the model performance on unseen data collected
from different experimental settings. We have also found
that the quality of model prediction is heavily influenced
by the data stream collection environment. We think these
findings are beneficial for the broad intelligent welding
community.

Index Terms—Arc welding, deep neural networks, gas
tungsten arc welding (GTAW), monitoring and classification,
multisource, pix2pix, sensing images.

[. INTRODUCTION

RC WELDING inspection and quality control are crucial
to the safety and structural soundness of a large number
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of metal products, since welding defects such as incomplete
penetration, lack of fusion, and porosity left in the structure
could become significant threats to the integrity of a welding
structure. An experienced welder can use personal sensing
ability (e.g., visual observation of the weld pool and sound from
the arc) to determine whether a welding defect has occurred [1],
but doing so is time-consuming and laborious. Although many
welding robots and automation systems have been applied in
manufacturing industries to improve productivity and reduce
cost, the demand for automatic welding quality detection is still
very high [2].

To monitor dynamical arc welding processes, many tradi-
tional machine learning algorithms have been developed to
extract features from weld pool surface profiles and determine
the welding penetration condition [3]. The interference of arc
light, one of the major challenges in capturing weld pool images
using visual sensors, has usually been reduced by adopting
active vision sensing systems equipped with auxiliary light
sources [4]. The key features of weld pool three-dimensional
(3-D) geometry have then been reconstructed through image
segmentation [5] and reconstruction [6]. A recent work [7]
proposed a supervised neuro-fuzzy inference model to correlate
the 3-D weld pool characteristic parameters to the welder’s
adjustments. In addition, a passive vision system was developed
to monitor the weld pool using an arc light for illumination [8],
[9]. To be specific, it allows the weld pool area to be partially
visualized with an appropriate camera exposure time. Based
on the calculated weld pool geometry, machine learning tech-
niques have been applied to estimate weld penetrations [10]-
[12]. Recently, Zhang et al. [13] proposed the support vector
machine with grid search optimization and cross-validation
(SVM-GSCV) model, which combined both weld pool images
and arc sound to predict penetrations.

Additionally, there exist multiple studies that take advantage
of neural networks to monitor welding processes. In the litera-
ture, Andersen et al. [14] is one of the earliest works applying
artificial neural networks (ANNG5) to arc welding processes and
monitoring. Lee et al. [15] demonstrated that ANNs performed
better than multiple regression analyses in back-bead predic-
tion in gas metal arc welding (GMAW). Similarly, another
work by Kim er al. [16] estimated bead height in robotic arc
welding using a neural network. Nagesh and Datta [17] fed
numerical variables such as voltage, current, and arc length

1551-3203 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2022 at 03:43:30 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6577-227X
https://orcid.org/0000-0003-0825-6724
https://orcid.org/0000-0001-6806-5108
https://orcid.org/0000-0001-6532-1081
https://orcid.org/0000-0001-6573-7933
mailto:yfeng14@vols.utk.edu
mailto:zchen25@vols.utk.edu
mailto:wangd@ornl.gov
mailto:chenj2@ornl.gov
mailto:fengz@ornl.gov

466 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 1, JANUARY 2020

into back-propagation neural networks to predict bead geometry
and penetration. Ates [18] explored the possibility of predicting
GMAW parameters based on ANNs. Wu er al. [19] applied the
single-hidden-layer feed-forward neural network to extracted
keyhole geometry and acoustic signatures to monitor variable
polarity plasma arc welding. Ghanty et al. [20] used ANNs
to estimate weld bead width and depth of penetration from an
infrared thermal image of the weld pool.

However, most existing arc weld monitoring methodologies
consist of two separate steps (i.e., extracting handcrafted weld
pool features explicitly, and correlating extracted features to
weld quality) and implies several limitations. First, it is difficult
to develop reliable and robust algorithms to extract the desired
features from weld pool profiles that present various irregular
shapes and uneven surfaces under different welding conditions.
Second, useful information, except handcrafted features, may
not be found through conventional image processing tech-
niques [21]. In contrast, deep learning algorithms learn complex
and implicit features automatically and have demonstrated
powerful capabilities in the field of computer vision and pattern
recognition. For example, a state-of-the-art neural network [22]
became the first to beat humans at image recognition on a
large-scale ImageNet data set [23] in 2015. Inspired by deep
learning achievements, major manufacturing companies such as
GE, Siemens, and Bosch are adopting deep learning to improve
all aspects of manufacturing processes, aiming to lower labor
costs, reduce product defects, increase production speed, and so
on. We also notice that several recent research studies [24]-[26]
are exploring the possibility of utilizing deep learning in weld
manufacturing.

When deep learning techniques are applied to monitor arc
welding processes, the following challenges might arise. First,
the domain knowledge is required to determine the quality of
weld pool images and annotate weld penetrations during the
creation of image data sets. Second, unexpected noises captured
in the welding process, such as random light reflection from the
dynamic weld pool surface, may cause deep neural networks to
make incorrect decisions. Third, different experimental settings
could lead to large variations in weld pool images: a challenging
situation for image classification via deep neural networks.
Finally, it is challenging to choose suitable deep neural net-
works, as one specific network with distinctive architectures
may behave inconsistently over different weld pool images.

In this article, we propose DeepWelding, an end-to-end deep
learning enhanced framework for multisource sensing weld pool
images, to overcome the challenges mentioned. DeepWelding
consists of three steps: weld pool image preprocessing, high-
quality image selection, and penetration classification. For each
step, we created corresponding data sets, trained neural net-
works, and proved their effectiveness. Although DeepWelding
was applied only to autogenous, bead-on-plate gas tungsten arc
welding (GTAW) processes in this article, we think it is flexible
enough for other common types of welding procedures (such as
metal inert gas welding, GMAW, and flux-cored arc welding) be-
cause DeepWelding has demonstrated its capability of handling
various types of weld pool images. We deployed five individual

neural networks with heterogeneous architectures to classify the
weld penetration and found that they demonstrated inconsistent
generalization capabilities when holding out multisource images
generated with specific experimental settings. Therefore, we
adopted two plurality voting-based ensemble models combining
multiple neural networks to improve the classification perfor-
mance on unseen data collected from different experimental
settings. Our contribution can be summarized as follows.

1) We designed and developed a DeepWelding framework,
which integrates welding image preprocessing, image
quality control, and robust classification.

2) Unlike most existing solutions that merely handle a single
type of weld pool images, DeepWelding incorporates
multisource sensing images, namely, the active vision,
passive vision, and reverse electrode images (REIs), to
monitor welding status simultaneously.

3) To the best of our knowledge, we are the first to apply the
pix2pix [27], an advanced generative adversarial network
(GAN) model, to removing noise in the weld pool images.

4) DeepWelding is highly flexible and extensible. For exam-
ple, the individual components of DeepWelding can be
further integrated with other existing welding monitoring
solutions to improve their performance.

5) We summarized the knowledge we learned when ap-
plying DeepWelding to GTAW, e.g., the classification
performance of neural networks was heavily influenced
by the data stream collection environment, and discussed
implications and future directions for DeepWelding.

Il. METHODOLOGY
A. Framework Overview

The proposed DeepWelding framework contains three deep
learning enhanced phases: 1) crop and remove noise from raw
weld pool images; 2) select high-quality preprocessed images
for further classification; and 3) classify the weld penetration
using deep learning-based ensemble methods. Fig. 1 illustrates
the main components of DeepWelding and the associated work-
flow between the three key phases. First, three types of weld
pool images, which are harvested concurrently using different
visual sensors, are cropped and further denoised if needed.
Then, deep learning based image selectors dichotomize those
preprocessed images as high-quality and low-quality images.
Only images of high quality are kept and fed to weld classifiers.
In the classification phase, for each image type, five independent
deep neural networks with heterogeneous architectures are used
to categorize images into different penetration classes, such
as partial penetration and full penetration. To improve the
classification stability and enhance the generalization capability
simultaneously, we designed two-level plurality voting ensem-
ble methods (See Ensemble-1 and Ensemble-2 in Fig. 1.) At the
first level, three Ensemble-1s combine the five heterogeneous
neural networks for active vision images, passive vision images,
and REIs, respectively, to produce improved results. At the
second level, Ensemble-2 further makes the three Ensemble-1s
agree on the final classification of the ongoing weld penetration
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Fig. 1.

Framework overview. The framework handles multisource sensing images (active vision images, passive vision images, and REls)

simultaneously using five different neural networks. On each sensing channel, Ensemble-1 concludes a single weld penetration label by aggregating
five individual neural networks’ results using plurality voting. Considering penetration labels generated by multisource sensing images might be
inconsistent, we designed Ensemble-2 to produce the final weld penetration through another plurality voting.

©

Fig. 2. Examples of collected multisource sensing weld pool images.
(a) Active vision. (b) Passive vision. (c) REI.

status at the time when the multisource sensing images were
captured.

B. Data Preprocessing

1) Data Description: We collected three types of weld pool
images (the active vision, passive vision, and REIs) to describe
the weld pool at the same time from different perspectives, as
shown in Fig. 2. The principle of image acquisition can be
found in our previous work [1], [28]. The active vision image
was obtained under laser light illumination that was almost
suppressed during data collection. The passive vision image
was obtained without any auxiliary light source. The weld pool
was partially visualized via arc light by controlling the camera
exposure time appropriately. The REI was obtained under a very
short exposure time. Compared with the passive vision image,
the arc light intensity was reduced. Because of weld pool surface
reflections, only the electrode and the REI can be visualized in
this type of image.

2) Cropping: Original captured images were usually very
large and contained useless pixels (see dark areas around the
weld pool). To improve the learning efficiency and focus on the
meaningful parts of images, we preprocessed all three types of
images. First, we determined the pixel location of the electrode,
which was unchanged during the whole experiment and was in

the same location in all three types of captured images when the
calibration was done. Then, we used a square bounding box to
extract useful information, as shown in Fig. 2.

3) Denoising: When streaming images are collected, unpre-
dicted light reflections may introduce random image noise. For
example, the bright zones inside the weld pool in Fig. 2(a)
are light reflection noise, which may fool neural networks into
learning trivial patterns and making incorrect decisions. Since
shapes of weld pools are not always regular circles or ellipses,
it would be difficult to locate exact weld pool edges. Moreover,
light reflections across weld pool edges make it hard to remove
noise based only on the brightness.

We adopted pix2pix [27], a conditional GAN (CGAN) based
image-to-image translation model, to remove the light reflection
noise. This image-to-image translation model consists mainly
of two components, the generator and the discriminator. The
former generates synthesized images to fool the discriminator,
whereas the latter learns to distinguish between fake and real
images. In our experiments, original streaming images were
used as inputs and manually denoised images were used as
targets to train the discriminator and the generator. Examples of
denoised images are shown in Table IV.

C. Image Selection

The extreme environment during the arc welding process,
such as the intense arc and surface oxidation, may greatly
affect the quality of welding images. Not all captured images
are qualified for classification because low-quality images may
trick deep neural networks into making inaccurate decisions.
The low-quality images obtained from different sources are
shown in Fig. 3. In Fig. 3(a), the active vision weld pool image
was overwhelmed by the laser light reflection. This condition
occasionally occurs as a result of dynamic change in the weld
pool surface and the material surface condition of the unmelted
area. Note that although meaningless pixels inside active vision
images of weld pools are filtered out during data preprocessing,
the laser light reflections outside the weld pool may also
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() (b) (©)

Fig. 3.
(b) Passive vision. (c) REI.

Low-quality multisource sensing images. (a) Active vision.

TABLE |
COMPARISON OF INVOLVED NEURAL NETWORKS

Name # Layers  # Parameters  Release Years
AlexNet 8 ~60M 2012
VGGNet 16 ~138M 2014
ResNet 50 ~26M 2015
DenseNet 121 ~8M 2016
CapsNet 3 ~TM 2017

demonstrate different patterns that cause incorrect classifica-
tions. For passive vision weld pool images, the image quality
is associated with the amount of light reaching the optical
sensors, which can be controlled by the camera exposure time
and aperture. The passive vision weld pool image shown in
Fig. 3(b) was overwhelmed by the arc light because of the long
exposure time and large aperture. The REI shown in Fig. 3(c)
was unqualified because the center area was saturated and
connected with the REI area.

Therefore, for different types of weld pool images, we de-
signed corresponding image selectors to justify their qualities
using the convolutional neural network [29]. We trained a
biclassification neural network to distinguish between good and
bad images. The bad images were directly dropped, while the
good images were fed forward.

D. Classification

The classification phase in Fig. 1 mainly consists of two
components, i.e., individual classifiers and ensemble models.
Individual classifiers are responsible for weld penetration pre-
dictions. Ensemble models summarize prediction results of
individual classifiers and determine the final prediction.

1) Individual Classifiers: Similar to image selectors, classi-
fiers are also image-type-wise. Therefore, we trained classifiers
for each type of weld pool image independently. Considering
the distinct patterns of active vision, passive vision, and REIs of
weld pools, multiple convolutional neural networks in different
architectures, which are capable of learning different features,
were trained and evaluated on collected data sets. To be specific,
we selected the candidate neural networks as illustrated in
Table I according to the number of layers, the number of
parameters, and the novelty.

a) AlexNet: AlexNet [29] aroused interest in applying
deep learning to machine vision when it won the ImageNet
challenge of 2012 [23]. Although AlexNet contained only

five convolutional layers and three fully connected layers, it
is a breakthrough development for the feasibility of running
it on GPUs and the techniques it introduced, such as data
augmentation and dropout to reduce overfitting.

b) VGGNet: VGGNet [30] is famous for its simplicity
and depth. To keep its architecture simple, VGGNet strictly used
a3 x 3 convolutional filter with a stride and a pad of 1, along with
a 2 x 2 max pooling layer with a stride of 2. VGGNet pushed
the depth to 16—19 weight layers that were very deep in 2014.
The performance of VGGNet reinforced the notion that deeper
layers promise more effective hierarchical representations of
visual data typically [31].

c) ResNet: ResNet [32] demonstrated the possibility
of training thousands of layers and still achieving compelling
performance. It introduced the identity shortcut connection be-
tween layers (a middle layer receives outputs from the preceding
second or third layer) to gain maximal representations and
alleviate the vanishing gradient problem.

d) DenseNet: DenseNet [33] connected each layer to
every other layer in a feed-forward fashion, i.e., for each layer,
outputs of all preceding layers are used as inputs, and its own
output feeds all subsequent layers. Compared with ResNet,
DenseNet demonstrated more efficiency in terms of parameters
and computation for the same level of accuracy because of its
further strengthened feature propagation and feature reuse.

e) CapsNet: CapsNet [34], [35] introduced a new
groundbreaking concept of capsules, or groups of neurons,
to capture properties of one entity inside an image. Unlike
traditional convolutional neural networks, CapsNet is robust
against geometric distortions and transformations because a
single capsule contains viewpoints from multiple layers.

2) Ensemble Models: Considering individual neural net-
works’ potential unstable classification performance on different
types of images and overfitting on unseen data, we designed
two-level plurality-voting-based ensemble models, Ensemble-1
and Ensemble-2 in Fig. 1, to predict the final weld penetrations
in a more robust way. At the first level, the image-type-wise
Ensemble-1 concluded classification results for each type of
image (i.e., active vision, passive vision, and REI) using the
plurality voting scheme. Suppose two labels, partial penetration
and full penetration, are available. If three or more than three of
the five individual neural networks (AlexNet, VGGNet, ResNet,
DenseNet, and CapsNet) predict partial penetration, Ensemble-1
will interpret the overall individual classifier decisions as par-
tial penetration. Otherwise, full penetration is concluded by
Ensemble-1.

As mentioned earlier, three Ensemble-1s (Ensemble-1 (Ac-
tive Vision), Ensemble-1 (Passive Vision), and Ensemble-1
(RED) in Fig. 1 act on three types of weld images. When
they disagree with one another, i.e., the labels predicted based
on active vision, passive vision, and REI are inconsistent,
the second-level Ensemble-2 combines their results using the
plurality voting scheme. For example, if both active Ensemble-1
and REI Ensemble-1 produce a partial penetration label, while
passive Ensemble-1 gives a full penetration label, Ensemble-2
will select partial penetration as the final label.
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Algorithm 1: Two-level Ensemble Models.

Data: S = {Active, Passive, RET}: the set of sensing
image types; N = {AlexNet,VGGNet,ResNet,
DenseNet, CapsNet}: the set of neural
networks; P: the set of weld penetration labels

Result: p* € P: the final weld penetration label

// Ensemble-1ls

for each s in S do

for each p in P do

‘ Cp+—0; // count of penetration p
end
for each n in N do

p<+ PI'; // penetration by neural

network n on sensing channel s
Cp<+Cp+1;// update the count ofp

end
Cmaw +—0 5 // the max count
P; < None ; // Ensemble-1 label on

sensing channel s
for each p in P do
if Cp, > Cyqz then
Craz — Cp; // update max count
Pf<«p; // Ensemble-1 label on s
end
end

end
// Ensemble-2
for each p in P do

‘ Cp+0; // count per penetration
end
for each s in S do
p<+ P! // Ensemble-1 label on s
Cp<+Cp+1; // update the count of p
end
Craz < 0 // the max count

for each p in P do
if C, > Cy0x then

Craz — Cp; // update max count
p* <+ p; // update final penetration
end
end
return p*

Ill. EXPERIMENTS

We first describe the GTAW platform and the computational
platform used in our article, then we list the data sets used in
each phase of DeepWelding. Finally, we present the parameter
settings for deep learning models involved in the DeepWelding
framework.

A. Welding Experiments

1) GTAW Platform and Weld Bead: Fig. 4 shows the con-
figuration of the experimental platform used in our article. The
welding torch traveled from the left toward the right to perform

Welding
torch

%

Laser

S
"“ﬁ*\

; th
Stairiless. _

/steel

Electrodes
" e
g ". ,/ﬁ(orkpie;:e

CCD
Camera

Fig. 4. Experimental setup of GTAW.

Fig. 5.  Weld bead examples. (a) Fully penetrated weld. (b) Partially
penetrated weld.

aweld. The optical sensing system was mounted on the welding
torch. A pulsed diode laser source (905 nm wavelength) was
fixed on the left of the torch with 45° incident angle. A CCD
camera was mounted on the right-hand side of the torch with
a 45° incline angle. A bandpass filter (905 nm) was placed in
front of the camera lens to suppress the arc light. The camera
shutter and the laser light were synchronized and controlled
through the computer, which allowed us to obtain three types
of weld pool images sequentially within 2 ms. Specifically,
1) an active vision image of the weld pool surface illuminated
by the pulsed laser and captured with a relatively short camera
exposure (approximately 1 s); 2) a passive vision image of the
weld pool surface illuminated by the welding arc without a
laser and captured with a relatively long exposure time (100 to
500 s); and 3) an REI also illuminated by the welding arc only
and captured with camera exposure duration at proximate 5 to
10 s. The REI image contains the position information of both
the electrode and its reflection from the weld pool. Such position
information could be used to determine the height of weld pool
surface [2].

Each GTAW welding experiment was performed on 304 L
stainless steel plates with a fixed thickness and constant welding
speed. The welding current was purposely adjusted to produce
different states of weld penetration.
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TABLE Il
DATA SET FOR DENOISING AND IMAGE SELECTION

Thickness (mm)  Speed (mm/s)  Current (A) # of images

2 1 50 357

2 1 60 276

3 1 70 414

3 2 100 181

6 2 120 734

6 2 150 540

TABLE Il
DATA SET FOR PENETRATION CLASSIFICATIONS

Thickness (mm)  Speed (mm/s)  Current (A) # of images

2 1 45~70 1275

3 1 70~110 1227

3 2 100~125 1011

Fig. 5 illustrates the topside view and cross section of welded
parts from a GTAW platform with two different penetration
states.

B. Data Set

We collected active vision images, passive vision images,
and REIs of weld pools under different experimental settings in
terms of the thickness of the material, the welding speed, and
the electrical current for data preprocessing, image selection,
and penetration classification. For simplicity, other welding
parameters, such as voltage, shielding gas rate, material, and
surface finish, were also considered fixed.

We used the same data set with diverse experimental settings
to perform both denoising and image selection, as shown in
Table II. The data set included thicknesses of materials, varying
from 2 to 6 mm; welding speeds from 1 to 2 mm/s; and electrical
currents from 50 to 150 A.

The data set for penetration classification (both training and
testing) is illustrated in Table I1I. We grouped experiments with
the same material thicknesses and moving speeds together. For
each group, we changed electrical current values to generate
images with labels of partial penetrations and full penetrations.
Note that experiments with material thicknesses of 6 mm listed
in Table II were not included in this data set (see Table III)
because we have only one label for penetration under this setting.
It is meaningless to train and evaluate classifiers on a data set
with only one label. But we still conducted data preprocessing
and image selection on these images, so their representative
examples are included in Table II.

C. Computational Experiments

The deep learning studies were performed on an Nvidia DGX
server with four cutting-edge Nvidia Tesla V100 GPUs. Each
Tesla V100 was equipped with 640 Tensor Cores and 16 GB
memory. We implemented all involved neural networks using
TensorFlow 1.7.1 and Python 3.5.2." Furthermore, we listed

'The project code is available online. [Online].  Available:

https://github.com/YunheFeng/deepwelding

technical details (such as network parameter setting) on each
of the computational experiment phases: data preprocessing,
image selection, and image classification.

1) Data Preprocessing: The pix2pix [27] image translation
model requires pairs of images (A, B) as input to learn the
mapping between image A and image B. In our experiments,
we set the originally captured active vision images as the image
A, and the images denoised by experts as the image B. When
training the pix2pix model, we used the default values of all
parameters, except that we set the max_epochs as 200.

2) Image Selection: As mentioned earlier, we adopted
AlexNet to distinguish between the low- and high-quality im-
ages. We used a batch size of 5, learning rate of 10~>, dropout
probability of 0.5, and weight decay of 5 x 10~* to train the
AlexNet image selector for 2000 epochs.

3) Image Classification. AlexNet: All the parameters were
the same for AlexNet, which was used for image selection,
except that we set the epoch as 400. VGGNet: To shorten
the training time, we fine-tuned our model based on the pre-
trained VGGNet on ImageNet. Specifically, we first loaded the
pretrained VGGNet and trained the last fully connected layer
with a learning rate of 103 for 40 epochs. Then, we trained
the full network with a learning rate of 10> for 400 epochs.
The batch size, dropout probability, and weight decay were the
same as for AlexNet. ResNet: We tuned the ResNet pretrained
on ImageNet using the Adam optimizer with a learning rate of
10~* for 400 epochs. We also set the patience as 10 for early
training, stopping if the performance did not increase within
10 epoch. DenseNet: The parameters were exactly the same as
for ResNet except that we tuned it on the pretrained DenseNet.
CapsNet: We used all default parameters in [34] and [35].

IV. RESULTS AND ANALYSIS

The performance of three components in the proposed frame-
work is presented in the following three sections. To be specific,
we illustrated and analyzed the denoising performance on
active vision images, the selection of high-quality multisource
images, and the weld penetration classification under different
experimental settings.

A. lllustration of Image Denoising Using pix2pix

We ran the deep learning based pix2pix model to remove
the light reflection noise in active vision images of weld pools;
the results are shown in Table IV. Each column of the table is
a specific experimental setting corresponding to the images in
each line in Table II. For example, the last column titled t = 6,
s = 2, ¢ = 150 contains active vision images generated with
a material thickness of 6 mm, welding speed of 2 mm/s, and
current of 150 A. The first row except the header in Table IV
is the original input image for the network, and the second
row lists the output image after denoising. The last row lists
the associated ground-truth images after manual generation
by experts. Generally speaking, Table IV shows satisfactory
performance achieved by the pix2pix model under diverse
experimental settings, as the denoised images are very close
to the images generated by human experts.
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TABLE IV
DENOISE PERFORMANCE UNDER DIFFERENT EXPERIMENTAL SETTINGS OF THICKNESS (), SPEED (s), AND CURRENT (c)

Labels t=2, s=1, ¢=50

t=2, s=1, ¢=60

Input

Output

Ground Truth

t=3, s=1, ¢=70

t=6, s=2, c=120 t=6, s=2, c=150

t=3, s=2, ¢=100

Sy

TABLE V
PERFORMANCE OF IMAGE SELECTORS ON MULTISOURCE IMAGES

Thickness Speed Current Denoise Acc. Passive Acc. REI Acc.
2 1 50 91.8% 90.1% 95%
2 1 60 90.2% 96.2% 98.2%
3 1 70 87.4% 92.5% 100%
3 2 100 81.8% 98.3% 97.3%
6 2 120 92.9% 100% 100%
6 2 150 90.9% 98.5% 98.5%

B. Performance of Image Selectors

For denoised active vision images, passive vision images, and
REIs in each line in Table II, we selected randomly 80% images
to train three image-type-wise AlexNets to select high-quality
images. The fourth to sixth columns in Table V demonstrate
the corresponding test accuracy on the other 20% images.
We can see that the average selection performance on passive
vision images and REIs is slightly better than that on denoised
active vision images. But note that even “low-quality”” denoised
active vision images actually have a higher quality than the
corresponding raw active vision images, since most noise inside
weld pools has been removed by pix2pix during preprocessing.
Overall, the trained AlexNets can achieve satisfactory accuracy
to filter out unnecessary, low-quality images for each of the
sensory input data streams under different experimental settings.

C. Performance of Penetration Classification

We used the data set in Table III to evaluate the penetration
classification performance. There are four possible ways to
design the experiments, regarding both the policy for grouping
data and the strategy for splitting data sets into training and
testing. For the data grouping policy, we can first combine
images in all three lines in Table III and then train the neural
networks on them. Or we can treat each line in Table III as
an independent data set and train neural networks on them

respectively. For the strategy to split data, we can split the data
with the same thickness (), welding speed (s), and electrical
current (c) into 80% training and 20% testing. Thus, the data
with the same welding experimental settings can be seen in
both training and testing data sets. Recall that we changed ¢
to generate different welding penetration labels under a given ¢
and s. Or we can hold out specific data collected with certain
currents as testing data sets and treat the rest as training data sets;
that approach enables us to see the generalization capability of
our methods, since the data generated with certain currents are
unseen in training neural networks.

When the mentioned 80%—-20% training—testing splitting is
conducted, no matter which grouping policy is taken, individual
neutral networks perform very well. Thus, these neural networks
are capable of learning useful features of welding images
automatically during training. After our two-level ensembles
were applied, the accuracy achieved was near 100%, which is a
clear index of overfitting. Therefore, this kind of data splitting
was shown not to be a good choice.

For the grouping policy, if data with different experimental
settings are not aggregated, individual neural networks have
to trained and applied for every combination of thickness ¢
and moving speed s. However it seems impractical in industry
because 1) the thickness and the speed are continuous values,
meaning a large number of models have to be trained, and 2) the
experimental setting must be explicitly given to switch between
different pretrained neural networks.

Therefore, we decided to group data generated under multiple
thicknesses ¢ and moving speeds s together, and held out unseen
data for testing. The performance of individual neural networks
and the two assemble methods on three different holdout sets
are listed in Table VI. Individual neural networks behaved
inconsistently regarding different types of sensing images and
different holdout sets. For example, AlexNet performed well on
Passive images, but failed to achieve a comparable accuracy on
REIs. Similarly, AlexNet demonstrated unstable performance
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TABLE VI
GENERALIZATION CAPABILITY OF GROUPING ALL DATA AND KEEPING
SPECIFIC EXPERIMENTAL SETTINGS OF THICKNESS (), SPEED (s),
AND CURRENT (c¢) UNSEEN DURING TRAINING

Holdout Set Classifier Active Denoise Passive  REI
Alexnet 71.8% 88.4% 91.4% 70.7%
t=2,s=1,c=50 VGGNet 94.6% 94.2% 76.9% 92.2%
t=3,s=1,c=70 ResNet 75.0% 54.7% 709% 78.9%
t=3,s=1,c=110 DenseNet 82.5% 93.5% 77.8% 99.4%
t=3,s=2,c=105 CapsNet 75.7%  90.2%  82.6% 97.6%
t=3,s=2,c=120 Ensemble-1 849% 93.1% 772% 92.9%
Ensemble-2 (4-way) 96.1%
Ensemble-2 (3-way) 91.8%
Alexnet 81.4% 88.0% 99.7% 83.0%
t=2,s=1,c=45 VGGNet 809% 804% 98.7% 84.5%
t=3,s=1,c=80 ResNet 91.6% 88.0% 99.5% 82.6%
t=3,s=1,c=95 DenseNet 859% 859% 84.1% 87.4%
t=3,s=2,c=105 CapsNet 86.9% 81.8% 649% 80.0%
t=3,s=2,c=120 Ensemble-1 87.0% 90.1% 99.7% 85.0%
Ensemble-2 (4-way) 87.5%
Ensemble-2 (3-way) 93.1%
Alexnet 743% 89.0% 83.6% 62.9%
t=2,s=1,c=50 VGGNet 85.1% 942%  68.7% 75.4%
t=3,s=1,c=70 ResNet 73.0% 88.1% 68.4% 59.7%
t=3,s=1,c=110 DenseNet 85.8% 802% 71.8% 64.9%
t=3,s=2,c=100 CapsNet 75.6% 88.1% 79.8% 91.7%
t=3,s=2,c=125 Ensemble-1 88.4% 91.3% 745% 67.1%
Ensemble-2 (4-way) 94.4%
Ensemble-2 (3-way) 88.1%

on different holdout sets (see an accuracy of 99.7% on the
second holdout set but 83.6% on the third one).

In Table VI, we also included the raw active vision images
without denoising (see the Active column). Denoising procedure
over the raw active vision images leads to a better result
using Ensemble-1s, which indicates the effectiveness of using
pix2pix to remove noise. On each type of sensing images,
although the Ensemble-1 was not always the one achieving
the highest accuracy, it kept the classification more robust and
stable because it outperformed the worst-case results produced
by individual neural networks significantly. We showed the
performance of two Ensemble-2s: the 4-way Ensemble-2 and the
3-way Ensemble-2. In addition to denoised active vision images,
passive vision images, and REIs, 4-way Ensemble-2s took into
account the raw active vision image results. In contrast, 3-way
Ensemble-2s excluded the raw active vision image results. On
each holdout data set, Ensemble-2s aggregated the results of
Ensemble-1s into final penetration labels, and demonstrated
acceptable performance that was much better than the low
accuracy from Ensemble-1s. Even the 87.5% accuracy from the
4-way Ensemble-2 in the second holdout data set is better the
87.0% and 85.0% by Ensemble-1s. Furthermore, the general-
ization capability results infer a good possibility that we may be
able to establish a unified neural network training procedure with
a single comprehensive data set that contains diverse welding
settings in terms of thickness ¢ and moving speed s.

V. CONCLUSION

In this article, we presented a DeepWelding framework that
uses multisource sensing images and deep learning technol-
ogy to classify weld penetration status during a demonstrative
GTAW process. The main challenges we encountered in the

article were data quality control among the multiple exper-
imental settings (a combination of material thickness, head
speed, and electrical current changes). Traditional methods of
weld penetration prediction involve interactive measurement
and empirical knowledge. When we adopted deep learning in
our framework, image calibration, denoising, and image selec-
tion became necessary and time-consuming processes. Neural
networks performed well in image denoising via CGAN-based
pix2pix and image selection via AlexNet. Five different neural
networks (AlexNet, VGGNet, ResNet, DenseNet, and CapsNet)
behaved inconsistently in the classification phase over three
individual sensing images. Therefore, we adopted two ensemble
methods to improve the model generalization capability by
collecting all the images from different experimental settings
into a single training data set. We found that the quality of model
prediction was heavily influenced by the data stream collection
environment. Compared with conventional approaches, deep
learning augmented approaches require more restricted and
standardized methods of data harvesting and preprocessing.

There exist several interesting and important directions for
future work. First, we will collect and annotate a larger number
of welding images generated under different welding parameter
settings (e.g., welding speed and thickness of the material)
and consistent experimental conditions to further fine-tune the
individual neural networks involved in DeepWelding. Second,
we will integrate the CGAN-based pix2pix, which is used in
DeepWelding to remove noise in active vision images, into
existing arc welding solutions to enhance the quality of welding
images. In addition, deploying DeepWelding on other types of
other common types of welding procedures (such as metal inert
gas welding, GMAW, and flux-cored arc welding) would also
be a future direction.
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