
Probabilistic Error Reasoning on IoT Edge Devices
Charles Qing Cao

Department of Electrical Engineering and Computer Science
University of Tennessee

Email: cao@utk.edu

Yunhe Feng

Department of Computer Science and Engineering
University of North Texas

Email: Yunhe.Feng@unt.edu

Abstract—Existing IoT applications are increasingly using sen-
sors to collect real-world measurements to make decisions. Such
measurements are inherently limited by the accuracy of ADC
devices, hence, introduce noise and errors. However, application
developers often choose scalar data to represent sensor readings
without regard to the errors associated with such data. This
gives the illusion that the measurements are error-free, leading
to error accumulation and false positive results. In this paper,
we present a new type of programming abstraction for modeling
errors and performing inference tasks in measurements of the
physical world on resource-constrained IoT devices, which we
call approximation variables (approxes). Using approxes does
not require any changes to the programming language itself.
Instead, it is designed as a suite of library functions that can
be integrated directly into existing programming practices. We
demonstrate how to use it in C programs. This framework
makes decisions about the distributions of parameter values and
inherently supports sampling and hypothesis testing to evaluate
the accuracy of computational results. We compare its use to
traditional programming practices and show how the library
can be used to reveal uncertainty to the user, so that it can
handle errors, reduce false positive results, and lead to better
decision-making. These benefits make approxes a compelling
and promising solution for programming with noisy sensor
measurements for modern IoT applications.

I. INTRODUCTION

Sensors in modern IoT devices hide a multitude of im-

plementation details in their easy-to-understand interfaces.

For example, when an ADC sensor [1] performs a sampling

operation, it almost always involves some error, i.e., the

difference between the estimated reading and the actual ground

truth [2], [3]. Without careful management of the possible

consequences of such errors, the interpretation of results

can become more complex, and, in extreme cases, lead to

compounding errors. Measurements from GPS sensors, for

example, are typically maximum likelihood estimates, which

are often accompanied by a pair of error estimations in both the

horizontal and vertical directions [4]–[6]. Unfortunately, due to

the inherent complexity of dealing with error distributions, IoT

programs often only use the maximum likelihood estimates,

usually scalar values, as inputs to the program’s computational

process. On the other hand, in statistics, random variables and

probability distribution functions have been widely studied

and used to model the uncertainty caused by probabilistic

errors [7]. For example, a random variable may be used to

represent an unbiased coin flip outcome, whose value has a

50% probability of being heads or tails. When multiple random

Fig. 1: Example of GPS sample code. Note this sample pro-

vides the horizontal and vertical error estimates as additional

information to the best estimate of location.

variables are involved in a calculation, statistical methods can

be used to derive the joint distribution density of the resulting

random variables. Given the need to manage measurement

errors, it is clear that modern IoT programs should offer

support for random variables in the programming language

level or in the application development level. This goal is

not supported by current programming practices, as existing

programming languages typically use scalar types (floats,

integers, and booleans) to represent the best estimate values

of the measurement results, leaving the programmer with the

problem of reasoning about uncertainty due to errors. Hence,

programmers often use heuristics to model uncertainties, such

as reporting only their maximum possible error ranges [8],

[9]. Since this task of finding exact distributions is generally

too complex [10], it is not usually implemented on resource-

constrained IoT platforms. As a motivating example, we

examined several open source reference implementations of

GPS chips. These programs, written in C, typically read GPS

location data and accuracy parameters. However, in application

notes, these latitude and longitude outputs as the best estimates

as there is no documentation on how to use the accuracy

readings. For example, the C code for the SAM-M8Q GPS

receiver is shown in Figure 1, which provides best estimates

as well as error estimates. Note that the hAcc and vAcc values,

which represent horizontal and vertical accuracy estimates, are

returned only when the verbose mode is turned on, and the

documentation only provides one line of text on the use: a

horizontal accuracy estimate is recorded to give an indication

of fix quality [11]. Programmers are not able to directly reason

about the distribution of GPS errors.

Consequently, while these simplified approaches are intu-

140

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00031

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

dg
e

C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 |

97
9-

8-
35

03
-0

48
3-

1/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
ED

G
E6

00
47

.2
02

3.
00

03
1

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

t

Fig. 2: Inconsistencies of two GPS trackers in their reports.

Both trackers are of the same model from the same company.

itive, they create a dilemma in that there is no adequate

estimation of the maximum errors in the final results, much

less about the distribution of errors under general conditions.

When used for conditional tests, such errors will result in false

positive and false negative reports, which trigger potentially

incorrect conditional actions. To complicate matters further,

we have no estimates of the frequency of these errors, so we

do not know how much the calculated results differ from the

ground truth. An example of this dilemma can be found in

Figure 2, which shows an experiment where we measure the

daily behavior of a group of dairy cows in a smart farm project.

To get accurate estimates, we placed two GPS trackers on each

cow’s collar. As seen from this graph, the two trackers give

quite different results, shown in the green and yellow dots,

for a short period of time. Should we trust one of them more

than the other? Or should we take the average of the reports?

Such ad-hoc solutions yield no insights on how reliable the

final results will be.

In general, this error estimation problem is not limited

to GPS data. Other examples include acoustic sensors for

broken glass detection, which rely on comparing the received

acoustic signal with a previously trained model, or real-time

inferences, which require the devices to estimate probability

of certain events based on posterior evidence as measured by

sensor [12]. We observe that in most scenarios, measurements

are probabilistic in nature. While heuristic approaches use

predefined thresholds to filter the results and decide whether an

event should be considered positive or negative, probabilistic

inference models are more accurate, flexible, and responsive

to different application scenarios. Therefore, to model the

distribution of errors, a new programming framework must

be developed.

Contributions: In this paper, we propose a programming

framework for random variables, called approximation vari-

ables, or approxes, and make it available for programming

IoT devices. We implemented this library in the C program-

ming language, which has been widely used on IoT de-

vices. This abstract programming structure supports arbitrary

probability distributions on limited computational resources

by combining sampling techniques with sequential statistical

analysis for decision-making, and forward/backward inference

for Bayesian graph models. Its syntax and semantics are

simple enough to be used by non-experts. Therefore, this

programming library significantly reduces the effort and diffi-

culty of integrating random variables into IoT programs. We

demonstrate how this framework can estimate the probability

distribution of errors, and how it is compiled as executable

code for runtime support. Moreover, it can support multiple

types of operations on random variables and propagate proba-

bility distributions, so that it perform inference of probabilities

based on evidence. To this end, we introduce a Bayesian

network semantics for conditional expressions, and show that

it can accurately model noisy physical phenomena that cannot

be easily captured by conventional scalar variables.

We achieve the aforementioned goals by creating a very

compact Bayesian network that represents a computation of

the distributions, and then performing inferences over the con-

ditional expressions. When inferences alone are not sufficient

to provide accurate estimates on probability based on evidence,

we use empirical samplings to provide approximate answers.

The accuracy and overhead of samplings can be changed

by tuning runtime parameters through program analysis or

dynamically adjusting them at runtime. By using hypothesis

testing for specific conditions, we have both guaranteed accu-

racy bounds and satisfactory performance on energy efficiency

on embedded devices. With this framework, we can easily

deploy learning tasks when random variables are needed. We

present case studies as examples on the usefulness of the

programming framework. First, we show how approxes can

be used to reduce random noise in digital sensors to obtain

better sensor aggregation. Second, in a smart farm deployment

of IoT devices, we show how we use the approxes to improve

the accuracy of location calculations from GPS trackers.

The remainder of the paper is organized as follows. We

first describe the background in Section II. We then present

our design in Section III. We describe the sequence sampling

analysis in Section IV. The implementation is discussed in

Section V, and the performance evaluation is given in Sec-

tion VI. We then survey related works in Section VII. Finally

the conclusions are provided in Section VIII.

II. MOTIVATING CASE STUDY

A. Case study

We first describe the IoT case study based on the smart

farm deployment we introduced in Figure 2. In this study,

we use two GPS trackers on the same cow to infer the true

locations of cows. Observe that the errors would have been

quite large if we had only used the best estimates. However,

dealing with the possible distribution of GPS measurements

141

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

requires additional knowledge, as the distribution of errors

is often irregular. For example, relevant studies have shown

that such errors can be best modeled with Pareto or Rayleigh

distribution, depending on the environment conditions [13].

However, such a methodology introduces problems, such as

a tracker with a constant velocity may experience calculated

speeds that are higher and lower, or, the tracked subject may

run through walls, as illustrated for example in the yellow

trace in Figure 2. We next demonstrate how to use approxes

to deal with errors in such cases. We observe that GPS devices

actually provide estimated error radius (a confidence interval

for the position).

B. Compounding Errors

Once measurements are represented as approxes, we need

to support operations on errors as uncertainty will propa-

gate through the computational procedures. In the previous

example, one problem that domain experts are interested in

is to study whether two animals have stayed together for an

extended period of time. Therefore, it is necessary to determine

the trajectory of each animal and the distance between them

in real time. We have found that using best estimates only,

distances can vary considerably in short time intervals due

to errors in samplings, which is not realistic since the actual

position of the cows does not change sharply in a short period

of time.

In general, these problems are challenging as errors will

compound over calculations. Without proper estimates, false

results will be introduced and propagated. More specifically, in

a typical program we often have to check true/false conditions

based on the value of variables, e.g., whether the distance

between two cows is below a threshold. We use the following

code sample to illustrate how conventional programs handle

conditional decisions. In this example, we assume two arrays,

a and b, are used to store the location trajectories of two cows.

// return true i f i n t e r s e c t i o n detected
boo l i n t e r s e c t i o n (a , b)
{
f o r (int i = 0 ; i<n ; i ++)
{ i f (d i s t a n c e (a [i] , b [i]) < T h r e s h o l d)
return t r u e ;
}
return f a l s e ;
}

However, by using single data samples instead of their prob-

abilistic distributions over the ground truth, we will generate

false positive and false negative comparison results at each

conditional statement, such as the IF statements above. In this

example, the calculation of the function distance will involve

the use of multiple basic operators, such as multiplication,

addition, and finding the square root. Using approxes, on

the other hand, applications can instead ask probabilistic

questions, such as whether two animals have stayed together

for a probability that is higher than a given threshold. As can

be seen, without an adequate abstraction of uncertain data,

calculations of error propagation and determining whether a

condition is true or false go well beyond the reach of many

developers.

We next illustrate how the same piece of code should be

modified by using approxes. If locations are approxes instead

of scalars, the IF statement will only be meaningful under

a statistical sense: what is the probability that, over the the

distribution range of a[i] and b[i], their distance is smaller

than the predefined T hreshold? Hence, we should revise the

above code into the following:

//Updated i n t e r s e c t i o n te s t ing
boo l i n t e r s e c t i o n (a , b)
{
f o r (int i = 0 ; i<n ; i ++)
{
i f (Prob (d i s t a n c e (a [i] , b [i])< T h r e s h o l d) > 0 . 9)
return t r u e ;
}
return f a l s e ;
}

In this updated version, a and b are no longer storing

scalar values, but instead, the actual distributions of each

location sampling. Hence, the program will explicitly reason

about the probability. However, one main challenge is that

the limited storage space of IoT devices do not allow us

to directly represent the probabilistic distributions. Further,

even a simple addition of two random variables will require

calculating the convolution of their distributions, which is too

energy-intensive for IoT devices. This is also the reason why

although many probabilistic programming frameworks have

been proposed in the context of machine learning, none of

them can be applied to IoT devices [14], [15]. In contrast,

we adopt a novel combination of inferences and samplings to

represent the distributions of each random variable. Our unique

approach is based on a combination of Bayesian inference for

precise answers and sequential analysis for sampling-based

answers. When Bayesian inferences alone are sufficient, we

do not need to perform samplings. On the other hand, when

more complex calculations are required, we determine whether

we can already answer an IF assertion by iterative samplings

of their values until a decision is made. During this process, we

obtain increasingly accurate approximations of the variables.

This decision significantly reduces the computational load on

the embedded devices to handle complex combinations of

probability variables.

C. Bayesian Inference

We next describe a second example that was first raised

by Pearl et al [16] to demonstrate Bayesian inference. In this

example, assume a house has an alarm system against burglary.

Further, the alarm system can get occasionally set off by an

earthquake. Two neighbors, Mary and John, who do not know

each other, agree that if they hear the alarm, they will call

you, but this is not guaranteed. The conditional probability

of events are given in Figure 3. Now, suppose that John has

142

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Example of Bayesian reasoning over an burglary

example.

called but Mary has not. How to reason about the probability

of burglary?

This problem has conventionally been solved in the context

of Bayesian inference and reasoning. That is, with posterior

evidence that John has called, we can calculate the probability

of specific events in a backward direction such as the likeli-

hood for burglary. This can be solved by calculating the joint

distribution of event combinations and apply the Bayesian rule

on the graph model [17]. While this algorithm is not new, we

find that being able to provide such type of support on IoT

devices is helpful for a wide range of applications. Instead

of requiring a server to run the inference tasks, an edge IoT

device can instead perform such inference tasks individually,

saving the cost of communication. In our design of approxes,

we provide support for such Bayesian inference tasks by

calculating the joint probability in both forward and backward

direction on a Bayesian graph, and adjust the prior probability

as new evidence from sensors becomes available. On the

programmer side, they only need to specify the conditional

graph as well as the initial conditions. The actual reasoning

and inference is performed automatically on the generated

graph model.

III. DESIGN OF APPROXES

A. Overview and Examples

In this section, we present the design for the programming

framework of approxes, including their associated operations

to handle probability distributions of uncertain data. We use

the C programming language as an example, but this frame-

work can also be ported to other types of programming

languages. The key data type for approxes is defined as a struc-

ture with associated runtime library functions. In contrast to

existing probabilistic programming approaches, the approxes

framework is primarily aimed at the growing number of IoT

developers. Generally, an approx encapsulates a random vari-

able of numerical type T. Here, T can be a double, an integer,

or a boolean. Computations are defined over the approxes by

constructing an implicit Bayesian network, which is a directed

acyclic graph (DAG), where leaves represent the approxes

and edges represent computational operations applied on the

leaf nodes. The inner nodes are dependent variables, which

represent the results of a sequence of operations computed

on their children nodes. For example, the following code

c(a+b)

a(N (0,1)) b(N (0,1))

Fig. 4: Computational graph of c = a + b. Notice that c is not

calculated until it is needed.

Categories Functions

Leaf nodes ApproxBool, ApproxInt, ApproxDouble, ApproxGeo

Dependents Approx 1, Approx 2, etc.

Distributions Flip, Gaussian, etc.

Conditions Approx Set 1, Approx Set 2, etc.

Math ApproxAdd, ApproxSub, ApproxMul, ApproxDiv, ApproxSqrt

Order ApproxLessThan, ApproxGreaterThan, ApproxEqual

Logical ApproxAnd, ApproxNot, ApproxOr

Reasoning ApproxObserve, ApproxEstimate

TABLE I: List of approxes and operations

illustrates two approxes of the double type, each of them

normally distributed between 0 and 1. A third approx, c, is

defined as the addition of a and b.

//add two approxes together .
ApproxDouble * a = G a u s s i a n (0 , 1) ;
ApproxDouble *b = G a u s s i a n (1 , 1) ;
ApproxDouble * c = ApproxAdd (a , b) ;

The code implicitly creates a Bayesian network with two

leaf nodes and a parent node for the computation result c =
a + b. We evaluate this Bayesian network when a distribution

of c is needed, which depends on the distribution of a and b.

Figure 4 shows the graph construct. is working.

B. Grammar and semantics

We now describe the syntax and semantics of approx-based

programs. Compared to using basic data types, programmers

need to make very few changes when using approxes. For

example, instead of defining an integer, the programmer needs

to use the data type ApproxInt. This variable is a random

variable that represents a probability distribution over a range

of values. Table I shows a list of the supported data types and

operators. Note that our random variable is defined in a type T,

where T can be an integer, a floating-point number, a boolean,

among others. For example, to express the coordinates of a

geographic location consisting of x and y, we need a structure

whose members x and y are defined as a floating-point based

type of approxes. For each random variable, once defined,

it can follow its own distribution, such as uniform, normal,

exponential, Poisson, Rayleigh, among others. The supported

distributions can be further extended as we provide the library

as open-source software. In this way, each approx has an

expected value and variance, which can be propagated through

computational steps. For example, under the usual arithmetic

operations, the variances can be scaled up or down.

One problem in writing programs with approxes is the

correct choice of probability distribution. For uncertain data,

143

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

the probability distribution is problem specific. In many cases,

developers already know these distributions, and sometimes

they use this knowledge to define approxes. In other cases,

developers can choose a broader range of nonparametric dis-

tributions. In general, developers have two ways to choose the

distribution that fits their particular problem. They can choose

a theoretical model, since many sources of uncertain data are

available to developers with dedicated theoretical models. For

example, according to the central limit theorem, the average

error of a noisy data approximates a Gaussian distribution.

Second, they can derive an empirical model. For example, for

GPS measurements, experiments provide empirical models for

the horizontal and vertical errors [13].

Due to space constraints, we cannot directly compute on

the probability density functions on IoT devices for two

reasons. First, the algebra of these random variables quickly

becomes impractical due to multiple steps of calculations.

Even the sum of two distributions requires the evaluation of

convolution operations, a task usually too expensive for IoT

devices. Second, many of the important distributions used for

sensor-related purposes, especially the results of composite

calculations, do not have a density function in closed form.

Therefore, for storage reasons, they cannot be represented in

this straightforward way. In fact, for the generic polynomial

function f(x), it is very difficult to obtain the density function

even we know the density function of x. To overcome these

problems, we choose to represent these distributions through a

computation tree structure, and the root node can be sampled

indirectly by calculating its value based on sampling those

leaf nodes. That is, we sample for each approx that has a

basic distribution supported by the programming library. Once

its value is known, we use it to calculate the inner nodes

upward to the root. Note that, given enough space and time,

this approximation can be arbitrarily accurate by performing

many samplings. For our problem, we usually have to achieve

a trade-off between efficiency and accuracy.

C. Bayesian Reasoning

Once a tree is constructed, it can be used for both Bayesian

reasoning and sampling purposes. We next describe how

Bayesian reasoning can be expressed using the proposed

syntax. Return to the burglary example earlier. We can write

the following code for reasoning purposes.

ApproxBool *b = F l i p (0 . 0 1) ; // burglary
ApproxBool * e = F l i p (0 . 0 0 5) ; //earthquake
ApproxBool * a la rm = Approx 2 (b , e) ;

// set condit ional p r o b a b i l i t i e s
Approx Set 2 (a larm , f a l s e , f a l s e , 0 . 0 1) ;
Approx Set 2 (a larm , f a l s e , t r u e , 0 . 2) ;
Approx Set 2 (a larm , t r u e , f a l s e , 0 . 9 5) ;
Approx Set 2 (a larm , t r u e , t r u e , 0 . 9 9) ;

ApproxBool * J o h n C a l l s , * MaryCa l l s ;
J o h n C a l l s = Approx 1 (a l a rm) ;
MaryCa l l s = Approx 1 (a l a rm) ;

//get distance for two coordinates
//G.. stands for GeoLocation
double getDistance(G.. L1, G.. L2)
{
 return Sqrt((L1.x-L2.x)^2+(L1.y-L2.y)^2)
}

while (true)
{
//get coordinate readings from GPS
GeoLocation L1 = Cow1 getGPSReading();
GeoLocation L2 = Cow2 getGPSReading();
//if too near, raise alarm
double Distance = getDistance(L1, L2);
if (Distance < Threshold)
 RaiseAlarm();

}

//get distance for two coordinates
//A.. stands for ApproxGeoLocation
ApproxDouble *getApproxDistance(A.. *L1, A.. *L2)
{
 ApproxDouble *dx = ApproxMul(ApproxSub(L1.x-
L2.x),ApproxSub(L1.x-L2.x));
 ApproxDouble *dy = ApproxMul(ApproxSub(L1.y-
L2.y),ApproxSub(L1.y-L2.y));
 return ApproxSqrt(ApproxAdd(dx, dy));
}

while (true)
{
//get coordinate distributions from GPS
ApproxGeo *L1 = Cow1 getApproxGPSReading();
ApproxGeo *L2 = Cow2 getApproxGPSReading();
//L1 and L2 are approxes derived from GPS readings
//now get distance distribution
ApproxDouble *Distance = getApproxDistance(L1, L2);
//calculate probability compared to threshold
if (ApproxProbLessThan(Distance , Threshold) > 0.9)
 RaiseAlarm();

}

Fig. 5: Example of using approxes with GPS readings. Notice

that when using approxes, a distribution is created and returned

by the GPS sensor reading function instead of a concrete value.

// set condit ional p r o b a b i l i t i e s
Approx Set 1 (J o h n C a l l s , t r u e , 0 . 9) ;
Approx Set 1 (J o h n C a l l s , f a l s e , 0 . 0 5) ;
Approx Set 1 (MaryCal ls , t r u e , 0 . 7) ;
Approx Set 1 (MaryCal ls , t r u e , 0 . 0 5) ;

//observed values to perform in ference
ApproxObserve (J o h n C a l l s , t r u e)
ApproxObserve (MaryCal ls , f a l s e)
double b u r g l a r y P r o b = ApproxEs t ima te (b) ;

This program is based on Figure 3, where we use the syntax

of approxes to express the available evidence and condition the

query on the unknown probability of burglary. Note that the

programmer only needs to specify the observation outcomes.

The actual inference procedures are performed automatically

by the library function ApproxEstimate based on available

values.

D. Enhancing Bayesian Inference with Sampling

In real-world applications, it is less common for Bayesian

inference to work end-to-end as many uncertain variables are

not expressed with closed-form conditional distributions, as in

the previous section, but are modeled by applying arithmetic,

logical and comparison operators on them. The program

then makes decisions differently depending on the uncertain

results. We use a complete example to show how we handle

uncertainty in conditional statement, such as the IF statement.

Figure 5 represents a comparison of two different types of

programs. Figure 6 shows a Bayesian network construction

using leaf nodes for individual approxes. Here each leaf node

is following a known distribution specified by the expert

developer (e.g. Gaussian) and the top root node reflects the

result of the calculation on the distributions of the distance

between L1 and L2.

Generally, in a Bayesian network graph, the incoming edges

of a node specify the other variables on which that node’s

variables depend. Observe that in the graph in Figure 6, the

144

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

L1.x L2.x

Approx
Sub

Approx
Sub

Approx
Mul

L1.y

Approx
Sub

Approx
Sub

Approx
Mul

Approx
Add

Approx
Sqrt

Approx
LessThan

Threshold

L2.y

Fig. 6: Computational graph of the distance calculation.

two nodes ApproxMul are based on the same ApproxSub
distributions. Then, the two ApproxMul nodes must be

multiplied together. Since Bayesian networks are constructed

dynamically and incrementally during program execution, the

resulting graph remains acyclic. Next, we need to test whether

a conditional expression is true or not, such as the comparison

between the root node ApproxSqrt to T hreshold in Figure 6.

Our core approach is to turn comparing a condition into

a hypothesis testing problem. Specifically, we use approxes

to encourage developers to ask appropriate questions about

probabilistic data, e.g., “based on the available data and the

assumed distribution, how confident are we that the distance

exceeds a certain threshold?” Notice that in the program, we

can use the confidence level as 0.9 in Figure 5. To illustrate

the impact of distributions on the conditional check, Figure 7

shows two distributions of the distance, one Gaussian and one

uniform, as well as the 90% percentile for the comparison

ApproxLessT han to be true (the shaded areas). Observe

that for the Gaussian distribution the cutoff line is quite

different from the uniform distribution. Furthermore, observe

that even if the mean of the distribution is on one side of the

threshold, the distribution may be so wide that the opposite

conclusion is still likely to be true at lower thresholds. That

is, a program using approxes can take both branches as true

of the IF expression, if neither side of the conditional cannot

reject the opposite hypothesis. On the other hand, the higher

the threshold, the stronger the evidence needed, producing

fewer false positives but more false negatives (which may

be missed when the ground truth is true). Hence, we have

to make decisions based on the unique characteristics for the

distributions.

Ultimately, it is up to the developer to choose whether

to encourage false positives or false negatives. Developers

can reduce the limit of false positives by requiring stronger

90% percentile 90% percentile

Fig. 7: Comparison of 90% percentile of different distributions.

The first distribution is Gaussian(3,0.3) distribution, and the

second is Uniform(1.5,4.5) distribution.

evidence, and vice versa. For each IF expression, the library

function is backed up using statistical hypothesis testing to

make inferences based on sample data. The algorithm works

as follows. First, we create a hypothesis test when evaluating

the conditional operator. In the above case, the null hypothesis

H0: Distance > Threshold and the alternate hypothesis H1:

Distance ≤ Threshold. We then take a large number of samples

through the computational graph and determine whether the

conditional null hypothesis can be rejected based on the

obtained sampling values, and whether the alternate hypothesis

can be rejected. If the runtime sampling cannot reject either

of them, then both of the hypothesis can be considered as

possible. This behavior will have an impact on the execution

of the program, where, in practice, an IF expression can pick

0, 1, or 2 branches for execution.

IV. SEQUENTIAL ANALYSIS BASED DECISION-MAKING

In this section, we describe the background of sequential

analysis, which is the key theoretical foundation for us to

decide how many samples to draw, and to reason about the

probability of conditionals to be satisfied.

A. Problem Statement

We introduce the following problem: given a set of random

variables each following their own distributions, and a compu-

tational DAG that performs operations on these variables, how

many samples do we need to obtain at each leaf node, so that

we can accept or reject the null hypothesis at a conditional

statement for an inner node with statistical confidence? Note

that the inner node may or may not the be top-level node in

the DAG tree. The leaf nodes can be sampled as many times

as needed.

B. Sequential Analysis

Our approach is based on sequential analysis [18], as it

does not require excessive storage to keep random distributions

in their complete forms. In this approach, we repeatedly

take samples from the sources, that is, drawing from i.i.d.

distributions until a decision is made. Sampling functions have

no parameters and return a new random sample from the distri-

bution on each call. For example, the pseudo-random number

generator is a sampling function for a uniform distribution, and

the Box-Mueller transform is a Gaussian distributed sampling

function. For composite approxes that has multiple elements,

145

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

we need to draw a sample for each element to obtain a

complete sample.

Once samples are obtained, we rely on sequential analysis to

decide which hypothesis is correct. We adopt the commonly

used method of sequential analysis called SPRT [19], [20],

which starts with two hypothesis: H0 : p = p0 and H1 :
p = p1, for an unknown distribution parameter p. The SPRT

method then calculates the likelihood ratio as a function of the

number of observations. It define that:

Λk :=

k∏
i=1

p1(Xi)

p0(Xi)
, k = 1, 2, . . .

The next step is to calculate the cumulative products of

the likelihood-ratio test, and the stopping rule is a simple

thresholding scheme:

1) a < Λk < b: continue drawing samples;

2) Λk ≥ b: Accept H1;

3) Λk ≤ a: Accept H0;

Here, the values of a and b depend on the desired type I

and type II errors, α and β. They may be chosen as follows:

1) α is the probability of rejecting H0 when H0 is true,

2) β is the probability of accepting H0 when H1 is true.

Generally, α and β must be decided beforehand in order to

set the thresholds appropriately.

C. Analysis of Gaussian Distribution

We now apply the SPRT method to Gaussian distribution

as an example, which is shown as follows. For other types of

distributions, SPRT supports similar derivation steps.

Specifically, for a distribution X ∼ N (μ, σ2), we draw a

series of Xi, where i = 0, 1, 2.... We have two assumptions:

H0 be the hypothesis that the mean of Xi is μ0, H1 be

the hypothesis that the mean of Xi is μ1, different from μ0.

Therefore, the probability density function of X is:

pi(X) =
1

σ
√

2π
exp

(
−1

2

(
X − μi

σ

)2
)

, i = 0, 1

Hence, we can calculate log Λk as:

log Λk = log
k∏

i=1

p1(Xi)

p0(Xi)
=

k∑
i=1

log
p1(Xi)

p0(Xi)

Putting them together we can have log Λk =
∑k

i=1 ti, where

ti = (μ1 − μ0)Xi + 1
2 (μ2

0 − μ2
1). Observe that Xi is a random

variable and we have its expectation on H0 and H1 as μ0 and

μ1, respectively. Therefore, we have E(ti|H0) = − 1
2 (μ1 −

μ0)2 and E(ti|H1) = 1
2 (μ1 − μ0)2. Hence, given properly

chosen A and B we see the result log Λk will either increase

above a certain threshold or decrease below a certain threshold,

hence proving the case that the results will be correct. Note

this process will continue until a decision is made and the

sampling procedure will stop. Later, in the evaluations, we

show the empirical number of samples needed is affordable

on embedded IoT devices.

L1.x L2.x

Approx
Sub

Approx
Sub

Approx
Mul

L1.y

Approx
Sub

Approx
Sub

Approx
Mul

Approx
Add

L2.y

Leaf Leaf Sub Sub Mul Leaf Leaf Sub Sub Mul Add

Pointers to dependent variables

Fig. 8: Memory organization of the computational DAG on

IoT devices.

V. IMPLEMENTATION

We discuss below how to implement approxes on IoT

devices. We implemented the approxes on the Avr Atmega

series microcontroller. The library implements both inference

and sampling modules for hybrid programs. We store the

tree structure into memory in a compact manner. Since it is

difficult to maintain dynamic memory allocation in embedded

systems, we use whole program optimization techniques to

determine memory usage. Specifically, we identify the number

of approxes created and used in a program before compiling

the program with the compiler. Figure 8 shows the internal

organization of the approxes in the array, where each element

can be an approx or a derived approx. In the latter case, it

contains references to other approxes by pointers.

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation on approxes for

uncertain sensor readings. We first demonstrate that when

digital processing modules may yield false positives and

negatives, approxes can effectively remove false positives and

reduce the error rate to 0. Second, we demonstrate how we

can improve accuracy of computations from a GPS location

tracker using approxes. Finally, we evaluate the computational

overhead and energy consumption of using approxes through

repeated samplings.

A. Reducing noise and errors with approxes

In this evaluation, we demonstrate using approxes can

effectively reduce Gaussian noise generated by sensor signal

processing (DSP) algorithms. We consider an application

scenario of alarm systems where multiple sensors are deployed

to monitor certain events such as glass breaks. We carry out the

experiments using twenty atmega2560 microcontrollers with

acoustic sensor boards and pre-recorded acoustic signatures

for glass-breaking events. The embedded signal processing

module is responsible for converting the raw acoustic record-

ings into event reports (true or false reports). Without loss of

146

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

False
Negative

False
Positive

Fig. 9: Gaussian distribution of acoustic samples used in our

evaluation. The blue curve represents the samples of raw

signals (with noise added) without events, and the orange

curve represents the samples of raw signals with events.

generality, we feed these acoustic sensors with inputs that are

mixed with Gaussian noise with parameterized distributions.

This allows us to take into consideration of arbitrary environ-

ment noise that may interfere with the accuracy of sensors. To

improve accuracy, just like a typical house monitoring system,

multiple acoustic sensors perform data aggregation to reduce

false alarms.

Figure 9 demonstrates the underlying Gaussian noise we

add to the sensors in their readings. We implement two types

of signal processing modules to convert raw signals, where

the signal input after mixing with noise as Gaussian. Note that

this is not necessarily the case in more complex environments,

but it demonstrates the most common scenarios and how our

algorithms perform. Once a microcontroller samples from one

of the curves, it is able to make a decision independently on

whether a target event has been present. Due to the possible

overlappings of the two Gaussian curves, both false positives

and false negatives may be present.

We then compare the performance of two versions of event

detection: the first version, BinarySensor, only reports 0 or

1 without the use of approxes. Once a sample is obtained, it

compares this sample to the mean of the two distributions, and

reports true or false by comparing the distances of the sample

to the means. The second version, ApproxSensor, represents

the probabilistic distributions of samples with approxes. It

reads the samples as a random variable instead of binary

outputs. Essentially, the version with ApproxSensor wraps

each sensor with a distribution, so that each sensor may be

sampled multiple times in a single deployment to make a

decision.

Based on this implementation, we then measure the ag-

gregate number of events by the total of 20 sensors. For

caliberation needs, we change the number of events in the

ground truth between 0 and 19. We then compare the reported

number of events to the ground truth.

Figure 10 shows the results for comparing the use of

approxes and the naive approach with binary sensors. Each

experiment involving approxes implicitly performs a hypoth-

esis test until a decision is made. Each experiment setting is

run for 100 rounds to collect the number of samplings needed

and their distribution is plotted.

Figure 10(a) shows the reported aggregation estimates with

positive readings P drawn from the distribution P ∼ N (0, 1)
and negative readings Q ∼ N (0.5, 1). Hence, there is a

significant number of false alarms and we call the sensors as

most noisy. Even with the number of actual events as 0, the

sensors still reported on average 7.6 events due to false alarms.

Similarly, in Figure 10(b) and Figure 10(c), we changed the

distributions of Q to be farther away from P , which leads to

better and more accurate reports. Specifically, the settings in

Figure 10(b) draws from P ∼ N (0, 1) and negative readings

Q ∼ N (1, 1), and Figure 10(c) draws from P ∼ N (0, 1) and

negative readings Q ∼ N (3, 1), respectively.

In Figure 10(d), we plot the results with approxes, with

multiple samples drawn for each test. The error rates drop to

0, as multiple rounds of samplings from the distributions are

made. We further plot the number of samplings for the settings

in (a), (b), and (c), and plot the results in Figure 10(e) to (g).

As shown, the more overlapping distributions require more

samplings to obtain accurate answers for hypothesis test in

the approx version of the implementation.

Finally, we plot the error rates of experiments (a) to (c) in

(h). The number of incorrect decisions (y-axis) made by each

noisy sensor at various noise settings are illustrated. As the

noise becomes smaller from (a) to (c), the number of errors

also decreases. This is consistent with the results from (a) to

(c). Note that with the presence of false alarms, only when

the number of actual events lies in the middle of total range,

the error rate is the lowest.

B. Uncertain GPS Data

In this case study, we study the problem of location tracking

using GPS sensors. Here, to better understand the ground

truth, we use a flat parking lot to obtain GPS readings from

two trackers. The trajectories of the deployment is shown

in Figure 11(a), where multiple periodic intersections are

illustrated. We first implement a naive version of a tracking

program that calculates the raw distance between trackers

using only the best estimates. Then, we implement an approx-

based version that uses the measured EHPE (estimated hori-

zontal position error) and EVPE (estimated vertical position

error) to train a Rayleigh distribution model, and calculate the

confidence intervals of the distances between two trackers. The

measured EHPE distribution is shown in Figure 11(b), and the

distribution of distances is shown in Figure 11(c).

Observe based on the experiment results, because of the

uncertainty nature of the approx program, we have signifi-

cantly improved the quality of GPS distance estimates. We

can observe that the intersections cannot be properly captured

by using single point GPS readings only (blue line), while

the approx based approach successfully records more periodic

intersections between the two trackers. On this basis, we can

adjust the posterior distribution of the readings. As this pro-

gram demonstrates, developers make only minimal changes to

147

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

(a) Aggregation estimates with
BinarySensor for most-noisy
sensors (Setting A)

(b) Aggregation estimates with
BinarySensor for medium-
noisy sensors (Setting B)

(c) Aggregation estimates with
BinarySensor for least-noisy
sensors (Setting C)

(d) Aggregation estimates with
ApproxSensor

(e) Number of samplings re-
quired for aggregation esti-
mates with ApproxSensor with
setting A

(f) Number of samplings re-
quired for aggregation esti-
mates with ApproxSensor with
setting B

(g) Number of samplings re-
quired for aggregation esti-
mates with ApproxSensor with
setting C

(h) Average estimation errors
with BinarySensor for settings
A, B, and C

Fig. 10: Experiment comparison of BinarySensor vs. ApproxSensor for aggregation estimation.

(a) The GPS trackers deployment in a
parking lot. The red line is one tracker

trajectory and the blue line is the second.

(b) The empirical distribution of EHPE
(estimated horizontal position error)

(c) The comparison of using raw distance (blue line) vs using
approxes for minimum distance (yellow line). The second method

leads to multiple intersection reports, consistent with ground truth.

Fig. 11: GPS tracking evaluation with and without approxes.

the original application and get benefits of increased accuracy.

This is made possible by reasoning correctly about uncertainty

and eliminating GPS errors better through modeling the dis-

tributions of errors in both horizontal and vertical directions.

VII. RELATED WORK

This section introduces related work with similar proba-

bilistic programming systems to our work. Several surveys

from recent years investigated this in great details [15], [21],

[22]. Here we mainly consider probabilistic programming

approaches in this section.

Probabilistic programming: Several existing studies have

attempted to introduce probabilistic programming in program-

ming languages for statistical inference and support opera-

tions on probabilistic distributions. For example, the BUGS

(Bayesian inference Using Gibbs Sampling) project [23] aims

to develop flexible software for the Bayesian analysis of

complex statistical models using Markov chain Monte Carlo

(MCMC) methods. The Church programming language and its

implementations [14], [24], [25] aimed to support probabilistic

reasoning directly in the language level. For such problems,

the program needs to automatically infer probability of various

distributions and compute the posterior distribution.

Language designs: A variety of probabilistic programming

systems attempt to achieve support for complex structures

through a frontend/backend approach [26]–[28], such as the

sample/observe paradigm, where probabilistic models are in-

voked for backend functions and implemented at the linguistic

level through a checkpoint approach. Other systems, such

as Gen [29], opt for a more integrated approach, using an

extensible family of modeling languages and combinators

to generate generative functions, which are essentially Julia

objects conforming to the generative function interface [30].

Probabilistic programming on IoT devices. While the

previous methods were mostly developed for machine learning

where computational power is not a limitation, they meet

challenges when implementing probabilistic programming on

embedded systems [31]–[34]. Edge and IoT computing devices

handle noisy data or make decisions in uncertain environ-

ments, and they require inexpensive and accurate probabilistic

reasoning frameworks. However, existing algorithms are slow

and often assume the need for accurate computation. Some

recent work, such as Statheros [35], provides compilers for

low-level, fixed-point approximation probabilistic program-

ming. statheros compiles programs into fixed-point inference

programs and is able to determine the best type of fixed-point

to use. These research efforts are considerably different from

ours in their methodology and goals.

148

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

VIII. CONCLUSIONS

This paper describes the probabilistic programming frame-

work called the approxes, which offer flexible and extensible

modeling and inference capabilities on IoT devices. We show

that using approxes outperforms conventional programs on

problems such as GPS tracking, estimating noise, among

others. It is now feasible to add embedded domain-specific

modeling languages based on approxes, each implementing its

custom distributions interfaces, that capture problem structure

from domains such as edge learning, inference, and decision

making. We plan to make our contributions open-source and

available for researchers and developers to use.

ACKNOWLEDGEMENT

This work was supported, in part, by the U.S. NSF CP-

S/USDA NIFA. This data collected involved human subjects or

animals in its research. Approval of all ethical and experimen-

tal procedures and protocols was granted by IACUC protocol

under Protocol No. 2530-0620.

REFERENCES

[1] Ron Mancini. Sensor to adc—analog interface design. Analog Applica-
tions, 2000.

[2] Afshin Haftbaradaran and Kenneth W Martin. A sample-time error
compensation technique for time-interleaved adc systems. In 2007 IEEE
Custom Integrated Circuits Conference, pages 341–344. IEEE, 2007.

[3] Eulalia Balestrieri, Pasquale Daponte, and Sergio Rapuano. A state
of the art on adc error compensation methods. IEEE Transactions on
Instrumentation and Measurement, 54(4):1388–1394, 2005.

[4] James Rankin. An error model for sensor simulation gps and differential
gps. In Proceedings of 1994 IEEE Position, Location and Navigation
Symposium-PLANS’94, pages 260–266. IEEE, 1994.

[5] Simon DP Williams, Yehuda Bock, Peng Fang, Paul Jamason,
Rosanne M Nikolaidis, Linette Prawirodirdjo, Meghan Miller, and
Daniel J Johnson. Error analysis of continuous gps position time series.
Journal of Geophysical Research: Solid Earth, 109(B3), 2004.

[6] Nabil M Drawil, Haitham M Amar, and Otman A Basir. Gps localization
accuracy classification: A context-based approach. IEEE Transactions
on Intelligent Transportation Systems, 14(1):262–273, 2012.

[7] Harald Cramér. Random variables and probability distributions. Num-
ber 36. Cambridge University Press, 2004.

[8] Jyrki Kullaa. Sensor validation using minimum mean square error
estimation. Mechanical Systems and Signal Processing, 24(5):1444–
1457, 2010.

[9] Sheng-Lan Ma, Shao-Fei Jiang, and Jun Li. Structural damage detection
considering sensor performance degradation and measurement noise
effect. Measurement, 131:431–442, 2019.

[10] Liang Heng, Grace Xingxin Gao, Todd Walter, and Per Enge. Statistical
characterization of gps signal-in-space errors. In Proceedings of the 2011
international technical meeting of the Institute of Navigation, pages 312–
319, 2011.

[11] SealHAT. Gps driver code example. https://github.com/SealHAT/
SAM-M8Q/blob/master/gps.c.

[12] Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik
Valeur. Bayesian event classification for intrusion detection. In 19th
Annual Computer Security Applications Conference, 2003. Proceedings.,
pages 14–23. IEEE, 2003.

[13] KA Bin Ahmad, Mohamed Sahmoudi, and Christophe Macabiau. Char-
acterization of gnss receiver position errors for user integrity monitoring
in urban environments. In Proceedings of the 2014 European Navigation
Conference (ENC)-GNSS, 2014.

[14] Noah D Goodman. The principles and practice of probabilistic program-
ming. ACM SIGPLAN Notices, 48(1):399–402, 2013.

[15] Hrishav Bakul Barua and Kartick Chandra Mondal. Approximate
computing: A survey of recent trends—bringing greenness to computing
and communication. Journal of The Institution of Engineers (India):
Series B, 100(6):619–626, 2019.

[16] JinHyung Kim and Judea Pearl. A computational model for causal
and diagnostic reasoning in inference systems. In International Joint
Conference on Artificial Intelligence, pages 0–0, 1983.

[17] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[18] Abraham Wald. Sequential analysis. Courier Corporation, 2004.
[19] Bhaskar Kumar Ghosh and Pranab Kumar Sen. Handbook of sequential

analysis. CRC Press, 1991.
[20] Tze Leung Lai. Likelihood ratio identities and their applications to

sequential analysis. Sequential Analysis, 23(4):467–497, 2004.
[21] Sparsh Mittal. A survey of techniques for approximate computing. ACM

Computing Surveys (CSUR), 48(4):1–33, 2016.
[22] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate

computing: A survey. IEEE Design & Test, 33(1):8–22, 2015.
[23] David Spiegelhalter, Andrew Thomas, Nicky Best, and Wally Gilks.

Bugs 0.5: Bayesian inference using gibbs sampling manual (version
ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK,
pages 1–59, 1996.

[24] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz,
and Joshua B Tenenbaum. Church: a language for generative models.
arXiv preprint arXiv:1206.3255, 2012.

[25] WebPPL. Webppl website. http://webppl.org/.
[26] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for

flexible probabilistic inference. In International conference on artificial
intelligence and statistics, pages 1682–1690. PMLR, 2018.

[27] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new ap-
proach to probabilistic programming inference. In Artificial Intelligence
and Statistics, pages 1024–1032. PMLR, 2014.

[28] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank
Wood. An introduction to probabilistic programming. arXiv preprint
arXiv:1809.10756, 2018.

[29] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and
Vikash K Mansinghka. Gen: a general-purpose probabilistic program-
ming system with programmable inference. In Proceedings of the
40th acm sigplan conference on programming language design and
implementation, pages 221–236, 2019.

[30] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM review, 59(1):65–98,
2017.

[31] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber,
and David Kotz. Application memory isolation on ultra-low-power
mcus. In 2018 USENIX Annual Technical Conference, pages 127–132,
2018.

[32] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alper-
ovich, Dmitry Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All
things considered: an analysis of iot devices on home networks. In 28th
USENIX Security Symposium, pages 1169–1185, 2019.

[33] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. Enerj: Approximate data types
for safe and general low-power computation. ACM SIGPLAN Notices,
46(6):164–174, 2011.

[34] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence
beyond the edge: Inference on intermittent embedded systems. In Iris
Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors,
Proceedings of the ASPLOS Conference, pages 199–213. ACM, 2019.

[35] Jacob Laurel, Rem Yang, Atharva Sehgal, Shubham Ugare, and Sasa
Misailovic. Statheros: Compiler for efficient low-precision probabilistic
programming. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 787–792. IEEE, 2021.

149

Authorized licensed use limited to: University of North Texas. Downloaded on September 11,2023 at 13:13:48 UTC from IEEE Xplore. Restrictions apply.

