
GenFlowchart : Parsing and Understanding
Flowchart Using Generative AI

Abdul Arbaz1, Heng Fan1, Junhua Ding1, Meikang Qiu2, and Yunhe Feng1

1 University of North Texas, Denton, TX 76207, USA
abdulkareemarbazabdulkareemarbaz@my.unt.edu,
{heng.fan, junhua.ding, yunhe.feng}@unt.edu

2 Augusta University, Augusta, GA 30912, USA qiumeikang@ieee.org

Abstract. Flowcharts serve as integral visual aids, encapsulating both
logical flows and specific component-level information in a manner eas-
ily interpretable by humans. However, automated parsing of these dia-
grams poses a significant challenge due to their intricate logical structure
and text-rich nature. In this paper, we introduce GenFlowchart, a novel
framework that employs generative AI to enhance the parsing and un-
derstanding of flowcharts. First, a cutting-edge segmentation model is
deployed to delineate the various components and geometrical shapes
within the flowchart using the Segment Anything Model (SAM). Sec-
ond, Optical Character Recognition (OCR) is utilized to extract the
text residing in each component for deeper functional comprehension.
Finally, we formulate prompts using prompt engineering for the gener-
ative AI to integrate the segmented results and extracted text, thereby
reconstructing the flowchart’s workflows. To validate the effectiveness of
GenFlowchart, we evaluate its performance across multiple flowcharts
and benchmark it against several baseline approaches. GenFlowchart is
available at https://github.com/ResponsibleAILab/GenFlowchart.

Keywords: Flowchart, OCR, Generative AI, GenAI, Image Segmentation, AI-
Generated Content

1 Introduction

Flowcharts serve as essential tools in system requirement analysis, preliminary
planning, and thorough design [19, 5]. Composed of symbols such as start/end,
process/action, decision, connector/arrow, and loop/iteration symbols, they vi-
sually represent sequences of actions or steps in an activity or complex system.
While their simplicity aids in conveying straightforward steps, complex solu-
tions can make comprehension challenging [8]. In various domains, from com-
puter science to business process management, flowcharts are widely used to
visualize complex processes, logical flows, and decision-making pathways. De-
spite their human-readable nature, automating their parsing poses significant
challenges due to the intricate logical relationships and textual information em-
bedded within each component.

Despite the growing demand for automating complex processes, current meth-
ods for computerized flowchart parsing often fall short, either due to inaccuracies

2 A. Arbaz et al.

or an inability to capture the essence and logic of these specialized diagrams. The
core challenge lies in effectively integrating segmented geometrical shapes with
extracted text while preserving the flowchart’s original intent. To address these
challenges, this paper proposes GenFlowchart , a novel framework that harnesses
Generative Artificial Intelligence (GenAI), to enhance automated flowchart pars-
ing and interpretation. The framework follows a structured approach, beginning
with the utilization of a state-of-the-art segmentation model to identify and
outline individual components and shapes within the flowchart. Optical Char-
acter Recognition (OCR) is then employed to extract textual information from
each segmented component, enabling a deeper functional understanding. Fur-
thermore, the framework incorporates generative AI, guided by meticulously
crafted prompts, to assimilate the segmented results and extracted text.

We evaluate the effectiveness of the suggested approach by carefully ana-
lyzing many flowchart datasets. Moreover, we conduct a thorough performance
study by comparing our methodology to the current baseline techniques. Our
contributions are summarized as follows:

– We propose GenFlowchart, a generative AI enhanced flowchart understand-
ing framework. The code of GenFlowchart is available at https://github.
com/ResponsibleAILab/GenFlowchart.

– We curate and create a public flowchart dataset for flowchart evaluation.
– We compare GenFlowchart with several baseline models, such as Pytesser-

act [1] and SAM [7], to demonstrate the effectiveness of GenFlowchart .

2 Related Work
As flowcharts play an important role in diverse applications, many approaches
have been proposed to understand and parse flowcharts automatically. For ex-
ample, Supaartagorn [16] proposed a web application-based tool for code gener-
ation from flowcharts containing shapes like start/end, input, process, output,
and decision. The extraction of flowcharts initially relied on OCR technology for
data extraction and a neural network for segmenting and detecting components
within flowcharts. Extracted data is organized and stored as metadata, in XML
format, providing algorithmic explanations of flowcharts.

Raghu et al. [11] proposed an end-to-end approach to parse flowcharts using
dialogues with GPT-2. It used retrieval-augmented generation architecture to
get contextually appropriate responses from generative AI models and enhance
the natural language understanding of the LLM. This paper also curated the
FLODIAL dataset which contained 3000+ conversations and was a valuable
resource for refining and advancing conversational AI agents.

Arrow R-CNN [13, 14] is designed for detecting hand-created flowcharts and
enhancing the capabilities of Faster R-CNN [4], by incorporating a dedicated
arrow key point predictor. This method improved the detection of connector
features, crucial for understanding the flowchart’s structure, while also predicting
bounding box information for chart containers.

Besides AI-based approaches [9, 23, 21], many traditional methods have been
developed to handle flowcharts [18, 17]. Traditional methods relied on predefined

GenFlowchart 3

symbols and flow allowing little room for deviation, while it ensured precision,
it suffered from limited functionality due to its rigid nature. On the other hand,
AI-based approaches offer a broader range of functionality and perform well for
most flowcharts, thanks to their adaptive and flexible nature. In our paper, we
propose GenFlowchart which leverages generative AI to enhance the comprehen-
sion of flowcharts. Our approach combines the strengths of AI-based techniques
with traditional methods, offering a better solution by employing generative AI,
to interpret and understand flowcharts with better accuracy and flexibility, ad-
dressing the limitations of previous methods.

3 Methodology

3.1 Framework Overview

GenFlowchart represents an AI-enhanced methodology that integrates Genera-
tive AI, AI-augmented visual segmentation, and Optical Character Recognition
(OCR) into a cohesive workflow, as shown in Figure 1. This integration facilitates
an advanced comprehension of flowcharts. The initial input for GenFlowchart en-
compasses images of flowcharts across a variety of types. These images undergo a
preliminary processing stage, where they are converted into grayscale to mitigate
any adverse effects of color on OCR performance and segmentation accuracy.

After this preprocessing, OCR technology is used which is renowned for its
exceptional accuracy and efficiency, we employ a configuration with PSM (Page
Segmentation Mode) 4 and OEM (OCR Engine Mode) 3, leveraging Tesseract [1,
15] coupled with LSTM-based engines [6]. This setup adeptly extracts textual
content and accompanying locational metadata from images of diverse formats.
For flowchart shape recognition, the Segment Anything Model (SAM) [7] is
utilized on images stripped of text to identify the geometric configurations of
flowchart components. SAM was chosen for its superior performance, as it has
been trained on 11 million images and 1.1 billion masks. GenFlowchart then syn-
ergizes the textual data retrieved via OCR with the geometric details identified
by SAM to decode the flowcharts’ logic and content comprehensively.

Specifically, we engage GPT 3.5 Turbo to integrate textual and geometric
data from flowcharts, facilitating a step-by-step comprehension of their logic.
GPT-3.5 Turbo was selected for its advanced NLP capabilities and its abil-
ity to generate coherent and contextually relevant outputs. The proposed Gen-
Flowchart leverages AI-driven techniques for natural language understanding
and generation, thereby enabling a deeper and more nuanced analysis of the
information conveyed by flowcharts.

3.2 Flowchart Image Preprocessing

Given the wide variety of flowchart images, characterized by differences in color,
size, and textual density, our initial step involves preprocessing these images to
ensure their accurate and efficient analysis. Flowchart images often feature vi-
brant visual components, including both text and shapes, which can adversely

4 A. Arbaz et al.

Step 1

Detailed step
by step outputs

Step 2

Step n

Developing
Prompt

ChatGPT

Text Data &
Bounding Box

Extracted
Features

Flowchart Images

Image
Preprocessing

Text Removal

["Lamp doesn't work\n\nLamp\nplugged in?\n\n>
 Plug in lamp\n\nBulb\nburned out?\n\n[>|
 Replace bulb\n\nRepair lamp\n"]

["L 75 1507 103 1549 0\n L 250 1114 277 1155 0\n
 P 808 1077 840 1120 0\nB 265 569 297 610 0\n
 R 808 536 844 578 0\nR 164 103 200 146 0\n"]

Segment Anything
 Model (SAM)

{'segmentation': array([[False, False, False, ..., False, False, False],
 [False, False, False, ..., False, False, False],
 [False, False, False, ..., False, False, False],
 ...,
 [False, False, False, ..., False, False, False],
 [False, False, False, ..., False, False, False],
 [False, False, False, ..., False, False, False]]),
 'area': 64935,
 'bbox': [771.0, 1003.0, 409.0, 162.0],
 'predicted_iou': 1.0151536464691162,
 'point_coords': [[918.75, 1048.703125]],
 'stability_score': 0.9834832549095154,
 'crop_box': [0, 0, 1200, 1637]}

St
ep

 1 Lamp Doesn\'t Work: In this state , the lamp is
not working and move on to check if lamp is plugged
in

St
ep

 2 Lamp Plugged in?: A decision point. It checks
whether the lamp is plugged in. If it is not then
plugin lamp , else check if bulb burned out.

St
ep

3 Bulb burned out :Check if bulb is burned out ,
if yes replace bulb else repair lamp

" Give a detailed and descriptive interpretation of
the flowchart in the form of steps using the

following details pytesseract text recognition data:
" + {pytesseract data} + " bounding box info

obtained from SAM: " + {Bounding box
information} + " the text in each of those bounding

boxes " + {Text inside bounding box} "

Instruction Based Prompting

Output: ?

Question

Input 1: " Give a detailed and descriptive
interpretation of the flowchart in the form of steps

using the following details pytesseract text
recognition data: " + {pytesseract data} + "
bounding box info obtained from SAM: " +

{Bounding box information} + " the text in each of
those bounding boxes " + {Text inside bounding

box} "

Output 1: ..

OCR Output

SAM's Segmented Output

Fig. 1: Framework overview of GenFlowchart . Textual and geometric informa-
tion from flowcharts is extracted using OCR and SAM, respectively. An approach
to prompt engineering, including both zero-shot and instruction-based prompt-
ing techniques, has been devised to integrate this textual and geometric data,
enabling the generation of a step-by-step understanding of the content and un-
derlying logic of flowcharts.

affect the subsequent recognition of text and shapes within the flowchart com-
ponents. To facilitate easier data interpretation and to mitigate the effects of
color variability, GenFlowchart initially transforms the colorful flowcharts into
grayscale images. Grayscale images are particularly advantageous for analyzing
flowcharts as they accentuate key features and simplify the image analysis and
understanding process.

Upon conversion to grayscale, the images are further processed to become bi-
nary images, consisting solely of black and white pixels. This step is particularly
beneficial for flowchart analysis, where color detail is less critical, thereby en-
hancing computational efficiency through the simplification of the image format
to a binary representation. The transition to binary images not only streamlines
the model’s efficiency but also ensures uniformity across all input images by em-
ploying image scaling techniques. This standardization facilitates the consistent
processing of the dataset, ensuring that each image is analyzed uniformly.

To further refine the image quality, morphological operations and noise re-
duction techniques3 are applied. These techniques play a crucial role in elimi-
nating undesired artifacts and enhancing the clarity of the images, making them
more conducive to accurate analysis. An illustrative comparison is provided in
Figure 2, where the left panel presents the original image, and the right panel
showcases the preprocessed outcome, highlighting the effectiveness of the pre-
processing steps.

3 https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

GenFlowchart 5

Fig. 2: Flowchart image preprocessing.
The left subfigure shows the original
flowchart, while the right subfigure de-
picts the flowchart post-preprocessing.

Fig. 3: SAM’s performance on
flowcharts. The left subfigure shows
the original flowchart, while the right
subfigure depicts the segmentation
results by SAM.

3.3 Text Extraction and Removal

Following the preprocessing of flowchart images, GenFlowchart performs two
critical text-related operations: text extraction and text removal. The extraction
of text from flowchart images is an essential step, as understanding the content
within these flowcharts is crucial. To this end, Pytesseract OCR is utilized for
the extraction of text and the identification of their respective locations within
the images, as demonstrated by the OCR outputs in Figure 1. This spatial
information is pivotal for subsequent stages of flowchart image analysis.

The second operation involves the removal of textual elements from the
flowchart images. While this approach may appear counterproductive at first
glance, it is motivated by the challenges posed by the unique shapes of tex-
tual characters, such as ‘O’, ‘P’, ‘Q’, etc., which can impede the segmentation
model’s analytical capabilities. The English language’s textual characters, with
their diverse structures and resemblances to closed shapes, can significantly com-
plicate the segmentation process. This complexity is particularly pronounced
when employing the SAM model, known for its precision in identifying intricate
features [7]. Furthermore, textual components, often similar in dimensions to
other flowcharts or document elements, challenge the segmentation process due
to the variability in font types, sizes, and layouts. Although the SAM model is
highly capable of detecting fine details, precise text separation from other ele-
ments necessitates meticulous processing. Image processing techniques such as
Median Blur [3] are applied to blur text-containing regions, thereby facilitating
more accurate segmentation and enhancing the model’s overall performance.

3.4 Image Segmentation and Analysis

Flowcharts usually consist of multiple visual components that are linked together
using the flow arrows. Beyond only understanding the contents of the compo-
nent, we also take care to record important information like the component’s
exact shape, its connection to previous parts, the bounding box information,

6 A. Arbaz et al.

and the specific point coordinates that indicate its placement and orientation.
The comprehensive segmentation procedure guarantees accurate flowchart com-
ponent representation. It enables GenFlowchart to comprehend not only the
written or graphical data inside each component but also their spatial and log-
ical relationships, facilitating a greater knowledge of the flowchart’s structure
and content.

GenFlowchart achieves accurate image segmentation by utilizing the ad-
vanced capabilities of the SAM model. With this strategic process, we can care-
fully break down intricate flowchart images into discrete parts that allow for a
thorough analysis of each element. Using SAM guarantees that our segmenta-
tion procedure is precise and sensitive to the details of the flowchart’s visual
components, improving GenFlowchart ’s ability to decipher and work with its
aspects. An example of its implementation is provided in Figure 3. Utilizing the
SAM model, we delve into segment information and gather bounding box coordi-
nates, facilitating logical parsing and enhancing comprehension of the flowchart’s
structure and content. Through the process of assigning a shape to each bound-
ing box, the model can obtain a comprehensive grasp of the composition of
the flowchart, allowing for a more in-depth and sophisticated examination of its
content. This method plays a crucial role in deciphering the complex interaction
between the written and visual components, leading to a deeper understanding
of the flowchart’s composition and significance.

3.5 Understanding Flowchart with Generative AI

Considering the heterogeneity of textual and image segmentation data extracted
from flowcharts, it is challenging to transform that data into a meaningful and
descriptive output. To solve this, we adopt Generative AI methods to create a
detailed set of steps that explain the flowchart’s logic and process by carefully cre-
ating instructional requests and prompts. Specifically, GenFlowchart uses Chat-
GPT (GPT-3.5 Turbo) APIs to map textual content and image segmentation
together, generating meaningful descriptions of flowcharts. By combining the ca-
pabilities of natural language creation and interpretation, this method makes it
feasible to convert a flowchart’s visual representation into a legible text format.
Another crucial component of the procedure is token management, which gives
us effective control over the output’s length and complexity. GenFlowchart can
guarantee that the generated steps give a succinct but comprehensive explana-
tion of the flowchart by adjusting the number of tokens, which will help close
the gap between data and human perception. To guide ChatGPT to generate a
high-quality explanation of a flowchart, GenFlowchart incorporates the following
two prompt engineering methods.

Zero-shot Prompting LLMs have been extensively trained on massive amounts
of data, enabling them to perform zero-shot prompting tasks with fundamental
proficiency. Zero-shot prompting involves presenting a prompt to LLMs without
the aid of example-based guidance, aiming to elicit a specific task execution [20].
Zero-shot learning seeks to generate an output from the LLM without furnish-

GenFlowchart 7

ing any contextual background for the prompt. The following is an example of
a zero-shot prompt utilized in GenFlowchart :

“Give a detailed and descriptive interpretation of the flowchart in the form of steps us-
ing the following details pytesseract text recognition data:” + {pytesseract OCR data}
+ “bounding box info obtained from Segment Anything Model (SAM):” + {Bounding box
information} + “the text in each of those bounding boxes” + {Text inside bounding box}

Instruction-based Prompting Instruction-based prompting is a highly effec-
tive strategy for guiding LLMs like ChatGPT in text-generation tasks. By pro-
viding clear instructions or examples, this approach directs the model’s output,
shaping its behavior according to input directives. OpenAI’s ChatCompletion
technique facilitates organized dialogues, setting the stage for productive inter-
actions [2]. Through a conversational structure involving input and instruction
messages, the LLM is trained to understand nuanced responses. Contextual es-
tablishment enhances ChatGPT’s ability to produce intelligent and contextually
relevant outputs, imbuing the model with higher-level thinking and improving
overall output quality for various applications. Below is the prompt used for
instruction-based prompting in GenFlowchart :

System Instruction: “You are a helpful assistant for flowchart understanding.”
Input 1: “Give a detailed and descriptive interpretation of the flowchart in the form of
steps using the following details pytesseract text recognition data: ” + {pytesseract data}
+ “ bounding box info obtained from Segment Anything Model (SAM):” + {Bounding box
information} + “the text in each of those bounding boxes” + {Text inside bounding box}
Output 1: 1. Lamp Doesn’t Work: In this state, the lamp is not working and move on to
check if the lamp is plugged in 2. Lamp Plugged in?: A decision point. It checks whether
the lamp is plugged in. If it is not then plugin lamp, else check if the bulb burned out. 3.
Bulb burned out: Check if the bulb is burned out, if yes replace the bulb else repair the
lamp.
Input 2:
Output 2:
......
Input N:
Output N:

4 Evaluation
4.1 Flowchart Dataset

We have collected a dataset of 550 flowcharts and used all of them to evaluate
GenFlowchart . The dataset is compiled from flowcharts extracted from diverse
patent documents in PDF format, covering diverse types of flowchart designs.
Leveraging PyMuPDF4, a high-performance Python library renowned for its ef-
ficiency in data extraction, analysis, conversion, and manipulation of PDFs, we
develop a script specifically designed for extracting image flowcharts from these
documents. To ensure reliable and accurate image analysis, we also recommend
maintaining a resolution range of 300 to 600 DPI (dots per inch). This resolu-
tion range is chosen to facilitate precise and detailed image processing, thereby
ensuring that the visual clarity of the flowcharts is preserved.
4 https://pymupdf.readthedocs.io/

8 A. Arbaz et al.

4.2 Evaluation Results

Our evaluation involves two primary components: text extraction and the de-
scription of the entire flowchart. While the Pytesseract library demonstrates
high precision under normal conditions, its accuracy may falter when dealing
with handwritten text. First, we evaluate the effectiveness of generative AI in
enhancing text extracted via Pytesseract. Second, we provide a comprehensive
explanation of the entire flowchart across various tasks and scenarios.

Evaluating AI-enhanced Text We conduct a comparative analysis between
the outputs generated by Pytesseract and ChatGPT. This study deepens our
understanding of Pytesseract results and offers insights into enhancing its perfor-
mance using generative AI. We evaluate both the traditionally obtained Pytesser-
act results and the generative AI-enhanced outputs using the BERT Score met-
ric [22], a robust measure for assessing sentence similarity. This metric calculates
token similarity, providing crucial insights into text quality. Our results reveal
that the generative AI-enhanced outputs outperform the standard Pytesseract
outputs, as shown in Table 1. This finding underscores the effectiveness of GPT-
3.5 in enhancing the precision and quality of text recognition outcomes. The
ability of generative AI models to improve Pytesseract results suggests their
significant potential in refining and optimizing text recognition tasks.

Table 1: Comparison of results of text recognition model.
Text Recognition Method BERT-P BERT-R BERT-F1

Pytesseract 0.7553 0.8373 0.7940
GPT Enhanced Pytesseract 0.8029 0.8388 0.8200

Evaluating Logical Description of Flowcharts In a study on Web-based
flowchart description, the code generated from flowcharts was manually reviewed
using functionality, usability, and performance tests, resulting in an overall score
of 4.27 out of 5, indicating a high level of satisfaction [16]. Inspired by this
work, our research concentrates on evaluating flowchart explanations, involving
a manual assessment of 550 flowchart images to determine satisfaction levels.
Ratings ranged from 0 to 5, with 0 indicating no output, 1 denoting output
unrelated to the flowchart, 2 representing partial summary (30-50% accuracy), 3
indicating moderate accuracy (50-70% accuracy), 4 representing high accuracy
(70-90% accuracy), and 5 indicating complete accuracy. Our model achieved an
average satisfaction level of 4.24, as seen in Table 2.

Ablation Study An ablation study was conducted to understand the signifi-
cance of the SAM in the model’s understanding of flowcharts. The study included

GenFlowchart 9

the details of the pytesseract text recognition model and the shapes in the image,
similar to our previous experiment. The results of the study revealed a signifi-
cant drop in the model’s understanding to 3.14 points out of 5 of its evaluation
without the inclusion of SAM (see the bottom line in Table 2). This suggests
the crucial role of the model in accurately identifying objects in the flowchart
to understand the flowchart’s overall flow. Therefore, the study highlights the
importance of SAM in aiding the model’s ability to comprehend effective com-
munication through flowcharts. By including SAM, the model can focus on the
relevant areas of the image crucial to its understanding, resulting in better ac-
curacy and interpretation.

Table 2: Satisfaction level on various modes of implementation.
Method Satisfaction Level

Web Application Based Code Generation [16] 4.27
Zero-shot Prompting 4.24

Instruction-based Prompting 4.68
Ablation Study (W/o SAM) 3.14

Bert Score The later part of the evaluation is done using non-manual metrics.
For that, we have chosen the Bert Score as one of the metrics. Our model per-
formed best in Instruction-based prompting, where the SAM model’s integration
yielded superior results. This highlights the effectiveness of our approach, evi-
dent in the precision (BERT-P), recall (BERT-R), and F1 (BERT-F1) score [22].
Leveraging the BERT Score confirmed the model’s capacity to capture semantic
nuances and contextual significance, facilitating nuanced evaluation. This vali-
dation shows the ability of GenFlowchart to generate high-quality, contextually
relevant text, further bolstering its credibility and efficacy, as shown in Table 3.

Table 3: BERT Score of each of the implementations.
Method BERT-P BERT-R BERT-F1

Zero-shot Prompting 0.8333 0.8314 0.8468
Instruction-based Prompting 0.8654 0.8648 0.8649

Zero-shot Prompting (w/o SAM) 0.8027 0.8249 0.8184
Instruction-based Prompting (w/o SAM) 0.8320 0.8242 0.8278

Cosine Similarity - word2vec The word2vec [10] is a technique for obtaining
the vector representation for a particular word and cosine similarity is a key
metric for assessing the similarity between sentences or paragraphs in natural
language processing, with scores ranging from -1 to 1. We measure the similarity

10 A. Arbaz et al.

of two vectors in a multi-dimensional space to determine phrase similarity. In
this context, sentences are represented as numerical vectors, where each dimen-
sion represents a unique element or attribute of the phrase. We obtained a score
of 72.38% in cosine similarity which illustrates the effectiveness of instruction-
based prompting in producing high-quality outputs. Table 4 highlights the ef-
fectiveness of the prompting which yields outputs that closely align with target
criteria or specifications. By utilizing this as an assessment measure, we gain
valuable insights into the effectiveness of different prompting strategies, partic-
ularly highlighting the advantages of instruction-based approaches in achieving
desired results.

Table 4: Cosine Similarity Score (word2vec) of each of the implementations.
Method Cosine Similarity (word2vec)

Zero-shot Prompting 0.6505
Instruction-based Prompting 0.7283

Zero-shot Prompting (W/o SAM) 0.6438
Instruction-based Prompting (W/o SAM) 0.6536

Cosine Similarity - Sentence Transformers We also utilize the Sentence
Transformer model [12] from HuggingFace to assess the similarity between flowchart
descriptions. A Sentence Transformer operates in two phases:

– The text is passed through a pre-trained transformer from HuggingFace,
which produces contextual embeddings for the input text.

– The embeddings then pass through a pooling layer to obtain fixed-length
embeddings.

Unlike word2vec, Sentence Transformers generate embeddings for entire sen-
tences or paragraphs rather than individual words, thus providing more con-
textual information. Using Sentence Transformers, we assess the effectiveness of
various prompting strategies in producing desired results. Among these strate-
gies, the instruction-based prompting method yields the highest similarity score,
reaching an impressive 76.25%.

Table 5 highlights the effectiveness of instruction-based prompting over other
methods due to providing better context, although acknowledging limitations, es-
pecially in handling multi-sentence contexts. We also see how various evaluation
metrics compare with each other as seen in Figure 4. While sentence transformers
show promise as a metric, further research is needed for broader applicability. By
combining assessment techniques like word2vec - Cosine Similarity and BERT
Score, we gain comprehensive insights into the model’s functionality, validating
its effectiveness and identifying areas for improvement. This approach offers a
holistic understanding of the model’s strengths and weaknesses, guiding ongoing
optimization efforts.

GenFlowchart 11

Table 5: Cosine Similarity Score (Sentence Transformers) of each of the imple-
mentations.

Method Cosine Similarity (Sentence Tx.)

Zero-shot Prompting 0.7111
Instruction-based Prompting 0.7625

Zero-shot Prompting (W/o SAM) 0.6996
Instruction-based Prompting (W/o SAM) 0.7031

BERT-P BERT-R BERT-F1 Cosine
word2vec

Cosine
Sent. Trans.

0.4

0.5

0.6

0.7

0.8

Si
m

ila
rit

y
sc

or
e

Zero shot (w/ SAM)
Instruction-based (w/ SAM)
Zero shot (w/o SAM)
Instruction-based (w/o SAM)

Fig. 4: Comparing results of evaluation methods

5 Conclusion

This paper introduces GenFlowchart , a novel framework designed to enhance
the automated parsing and understanding of flowcharts using generative AI.
The challenges associated with the intricate logical structure and text-rich na-
ture of flowcharts are effectively addressed through a combination of advanced
segmentation techniques, OCR, and prompt engineering. The integration of the
Segment Anything Model and GPT-3.5 Turbo demonstrates significant improve-
ments in the accuracy and comprehension of flowchart components and their
interrelationships. The evaluation of GenFlowchart , utilizing a dataset of 550
diverse flowchart images, showcases its superior performance compared to base-
line approaches. The comprehensive analysis reveals that generative AI can
significantly enhance text recognition outputs, as evidenced by the improved
BERT Scores and cosine similarity metrics. Furthermore, the incorporation of
instruction-based prompting, combined with SAM, leads to a notable increase
in the accuracy of flowchart interpretations.

References

1. pytesseract — pypi.org. https://pypi.org/project/pytesseract/. [Accessed
16-01-2024].

12 A. Arbaz et al.

2. Tariq Alhindi, Tuhin Chakrabarty, Elena Musi, and Smaranda Muresan. Mul-
titask instruction-based prompting for fallacy recognition. arXiv preprint
arXiv:2301.09992, 2023.

3. Gary Bradski, Adrian Kaehler, et al. OpenCV: Open source computer vision li-
brary. https://opencv.org/, 2020. Accessed: 2024-01-10.

4. Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

5. David Harel. Statecharts: A visual formalism for complex systems. Science of
computer programming, 8(3):231–274, 1987.

6. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

7. Alexander Kirillov, Eric Mintun, et al. Segment anything. In IEEE/CVF CVPR,
pages 4015–4026, 2023.

8. Donald E Knuth. Runcible—algebraic translation on a limited computer. Com-
munications of the ACM, 2(11):18–21, 1959.

9. C. Ling, J. Jiang, et al. Deep graph representation learning and optimization for
influence maximization. In ICML, 2023.

10. Tomas Mikolov, Ilya Sutskever, et al. Distributed representations of words and
phrases and their compositionality. Advances in neural infor. proc. sys., 26, 2013.

11. Dinesh Raghu, Shantanu Agarwal, Sachindra Joshi, et al. End-to-end learning of
flowchart grounded task-oriented dialogs. arXiv preprint arXiv:2109.07263, 2021.

12. Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

13. Bernhard Schäfer, Margret Keuper, and Heiner Stuckenschmidt. Arrow r-cnn for
handwritten diagram recognition. International Journal on Document Analysis
and Recognition (IJDAR), 24(1):3–17, 2021.

14. Bernhard Schäfer and Heiner Stuckenschmidt. Arrow r-cnn for flowchart recogni-
tion. In Intl. Conf. on Docu. Analysis and Recog. Workshops (ICDARW), volume 1,
pages 7–13, 2019.

15. Joshua A Suitter. Accuracy of optical character recognition software google tesser-
act. 2015.

16. Chanchai Supaartagorn. Web application for automatic code generator using a
structured flowchart. In 8th IEEE Intl. Conf. on Software Engi. and Service Sci.
(ICSESS), pages 114–117, 2017.

17. Axel Winkelmann and Burkhard Weiß. Automatic identification of structural pro-
cess weaknesses in flow chart diagrams. Business Process Management Journal,
17(5):787–807, 2011.

18. Xiang-Hu WU, Ming-Cheng QU, et al. A code automatic generation algorithm
based on structured flowchart. Appl. Math, 6(1S):1S–8S, 2012.

19. Stelios Xinogalos. Using flowchart-based programming environments for simplify-
ing programming and software engineering processes. In 2013 IEEE Global Engi-
neering Education Conference (EDUCON), pages 1313–1322. IEEE, 2013.

20. Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text
classification: Datasets, evaluation and entailment approach. arXiv preprint
arXiv:1909.00161, 2019.

21. Y. Zeng, M. Pan, et al. Narcissus: A practical clean-label backdoor attack with
limited information. In ACM CCS, 2023.

22. Tianyi Zhang, Varsha Kishore, Felix Wu, et al. Bertscore: Evaluating text gener-
ation with bert. arXiv preprint arXiv:1904.09675, 2019.

23. Y. Zhang et al. Communication-efficient stochastic gradient descent ascent with
momentum algorithms. In IJCAI 2023., 2023.

