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Abstract

Network pruning aims to compress models while mini-
mizing loss in accuracy. With the increasing focus on bias
in AI systems, the bias inheriting or even magnification
nature of traditional network pruning methods has raised
a new perspective towards fairness-aware network prun-
ing. Straightforward pruning plus debias methods and re-
cent designs for monitoring disparities of demographic at-
tributes during pruning have endeavored to enhance fair-
ness in pruning. However, neither simple assembling of
two tasks nor specifically designed pruning strategies could
achieve the optimal trade-off among pruning ratio, accu-
racy, and fairness. This paper proposes an end-to-end
learnable framework for fairness-aware network pruning,
which optimizes both pruning and debias tasks jointly by
adversarial training against those final evaluation metrics
like accuracy for pruning, and disparate impact (DI) and
equalized odds (DEO) for fairness. In other words, our
fairness-aware adversarial pruning method would learn to
prune without any handcraft rules. Therefore, our approach
could flexibly adapt to variate network structures. Exhaus-
tive experimentation demonstrates the generalization ca-
pacity of our approach, as well as superior performance
on pruning and debias simultaneously. To highlight, the
proposed method could preserve the SOTA pruning per-
formance while significantly improving fairness by around
50% as compared to traditional pruning methods.

1. Introduction

With the massive growth of parameters in nowadays
deep models, pruning techniques [10, 8, 7] have achieved
appealing reductions in network memory footprint and time
complexity. However, they tend to overlook the bias hid-
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Figure 1: Can existing pruning methods improve model
fairness while maintaining accuracy? We use the area of
a circle to represent the size of a model after pruning, i.e.,
the smaller the area, the more compact the model. Towards
the bottom-right corner of the figure, it represents a more
accurate and fair model. Please note that the SOTA net-
work pruning method SGDP [28] (pink) achieves high ac-
curacy while lagging far behind in fairness on CelebA [21]
dataset. Even with enhanced fairness via Adversarial De-
biasing [42] before pruning, existing pruning methods (yel-
low) seriously degrade the fairness. Our method (green) sig-
nificantly improves fairness and preserves a relatively high
accuracy even with a high pruning ratio.

den behind high-accuracy predictions [2, 27, 24]. Thus, it is
critical to improving fairness in network pruning for broad
and reliable applications of AI systems. Intuitively, fairness
could be considered as postprocessing after pruning, but it
would come to a suboptimal solution since disparate ob-
jectives of these two tasks. Therefore, optimizing fairness
during the pruning process would be a promising research
direction, which motivates our work toward this track.

Various pruning techniques have been proposed to min-
imize degradation in accuracy after network pruning [3, 7,
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37] while seldom focusing on the improvement in model
fairness. We have demonstrated in Figure 1 that existing
pruning methods do not consider fairness, i.e., compressed
models via SOTA pruning approach [28] (green) achieve
high accuracy but present strong biases against sensitive at-
tributes. Even if we enhance the model fairness in advance,
the compressed models (purple) still suffer from unfair-
ness with significant accuracy degradation. Current pruning
techniques tend to pursue high accuracy with a high pruning
ratio but ignore inherent unfairness in deep models.

Method PR. ACC↑ DEO↓

Normal training 0% 81.63% 0.5229
FairGRAPE [19] 80% 80.04% 0.5155 (-0.0074)

Ours 80% 78.06% 0.3390 (-0.1839)

Method PR. ACC↑ DI↑

Normal training 0% 81.63% 0.3144
FairGRAPE [19] 80% 80.04% 0.2315 (-0.0829)

Ours 80% 79.96% 0.4560 (+0.1416)

Table 1: Comparison of our method and FairGRAPE on ac-
curacy and demographic fairness. PR. denotes the number
of parameters to be pruned.

Some recent works have started to explore fairness en-
hancement during pruning. Lin et al. [19] propose Fair-
GRAPE to reduce the disparity in performance degrada-
tion on different sub-groups caused by pruning while con-
tributing less to demographic fairness as shown in Tab. 1.
Wu et al. [38] took pruning as a tool to improve model fair-
ness. However, there is still space for improvement, since
they targeted medical images that may require strong prior
knowledge to design the method.

Above all, it is imperative to propose an effective to ame-
liorate fairness and preserve the accuracy and efficiency of
network pruning. Since it is difficult to train a small sub-
network from scratch to achieve the same performance as
its dense counterpart [34, 5, 22], the practical solution is
to reduce a large-scale network with redundant and biased
parameters to a compact and unbiased sub-network. The
main challenge lies in searching for biased and redundant
connections and improving model fairness while not hurt-
ing the accuracy of the pruned model.

In this paper, we propose the fairness-aware pruning
technique to improve fairness and preserve the accuracy and
efficiency of compressed models. To achieve this, we guide
the pruning process to decide which connections to prune
in terms of parameter redundancy and model bias. The key
idea is to formulate the pruning step as adversarial learning
between fairness and performance. Specifically, we design
a discriminator to distinguish predictions from one sensitive
group against others. During the training process, the dis-
criminator is trained to remove the correlation between pre-
diction and sensitive attribute while the pruning step is to

train the sub-network to deceive the discriminator, thus ac-
complishing fairness-aware pruning in one shot. Exhaustive
experimental evaluation demonstrates that our compressed
networks simultaneously ameliorate fairness and maintain
comparable accuracy and efficiency.

Recently, Ramanujan et al. [28] found the existence of
hidden sub-networks with high benign accuracy within ran-
domly initialized networks and Sehwag et al. [33] and Fu et
al. [6] extend the finding to sub-networks with robust ac-
curacy. Using our pruning technique, we further extend
the finding to model fairness, where we uncover fair sub-
networks within randomly initialized networks without any
model training. This indicates that searching for the loca-
tions of a subset of weights within a randomly initialized
network might be potentially as effective as adversarially
debiasing weight values in comparable model sizes, which
opens up a new respective for understanding model fairness.

In summary, the main contributions are in three-folds:

• We propose the fairness-aware pruning technique,
which designs a discriminator to distinguish the cor-
relation between predictions and fairness-related at-
tributes. The pruning step is trained adversarially with
a discriminator. This design effectively ameliorates
fairness, achieves efficiency, and preserves accuracy
on par with comparable-sized models.

• Exhaustive experiment validates the superior perfor-
mance of our method. The compressed networks out-
perform the state-of-art pruning techniques on fairness
and achieve comparable performance on accuracy.

• The proposed method can effectively search a fair sub-
network from a randomly initialized network without
any training. This finding would open up a new per-
spective on model fairness.

2. Related Work

2.1. Model Compression

Model compression aims to reduce the parameters of
networks while maintaining comparable model perfor-
mance. Popular directions for network compression in-
volve network pruning [10, 5, 22, 30], parameter quantiza-
tion [9], knowledge distillation [13], and neural architecture
search [44]. In our paper, we focus on network pruning,
which eliminates redundant connections without assump-
tions about the structures of weights.

Existing research in network pruning mainly focuses on
minimizing the degradation of performance after pruning
and designing efficient pruning algorithms: how to extract
informative connections [17, 20, 4, 25, 18], how to maintain
the structure of the original model [16, 36], and when to
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conduct pruning during the training process [35, 39]. How-
ever, existing pruning methods do not account for the fair-
ness of compressed models.

2.2. Unfairness Mitigation

Existing research on model unfairness mitigation can be
divided into three categories according to targeting stages:
pre-processing, in-processing, and post-processing. Pre-
processing methods [26, 29, 43] mitigate biases in the train-
ing dataset before training. Prior works utilize representa-
tion transformation and distribution augmentation to miti-
gate bias in training sets. In-processing [41, 1, 42, 31, 32]
methods design fairness-aware training algorithm, i.e., in-
troducing fairness penalty or employing adversarial strate-
gies. Post-processing [23, 15] methods adjust model pre-
dictions after training according to certain fairness crite-
ria. Existing works on post-processing cover a wide variety
including replacing the biased classifier with a pre-trained
fair classifier and manipulating model predictions based on
group fairness criteria. Current works put more emphasis
on full-size pre-trained models. However, few works focus
on the fairness of pruned models. In this paper, we borrow
the ideas from network pruning and unfairness mitigation
and tend to achieve fairness-aware network pruning.

3. Preliminary
3.1. Network Pruning

Existing pruning methods perform various compression
pipelines. One such highly successful approach is a three-
step compression pipeline [10, 8]. It involves pre-training a
network, pruning it, and then fine-tuning it. In the pruning
step, a binary mask is obtained, which determines which
connections to be pruned. In the fine-tuning step, only the
non-pruned connections are updated in order to maintain
the model performance. We refer to the network obtained
after fine-tuning as the compressed network. Note that both
pruning and fine-tuning steps can be alternatively repeated
to perform multi-step pruning [10].

3.2. Model Fairness

In this paper, we mainly focus on visual classification
models because of extensive academic efforts on them, as
well as their broad industrial applications. Moreover, it is
imperative to achieve equal treatment for people with differ-
ent protected attributes, e.g., nationality, gender, and ethnic-
ity. Usually, disparate impact [40] and equalized odds [11]
are used to measure model fairness.

In a binary classification task, e.g., facial attribute classi-
fication, suppose target label y ∈ Y = {−1, 1}, and sensi-
tive attribute z ∈ Z = {−1, 1}. y = 1 is set as favourable
class (e.g., attractive) and z = 1 is set as privileged group
(e.g., Blond Hair).

ℒ!"#$%
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Figure 2: Overview of the proposed method, which con-
sists of two learnable components, i.e., a generator for net-
work pruning, and discriminators for DI and DEO respec-
tively for distinguishing correlation between sensitive at-
tribute and model prediction.

Definition 1 (Disparate Impact) If the value of z does not in-
fluence assigning a sample to the positive class, i.e., model
prediction ŷ = 1 ⊥ z, then the classifier satisfies demo-
graphic parity:

P (ŷ = 1 | z = −1) = P (ŷ = 1 | z = 1). (1)

Disparate impact aims for the same positive prediction
ratio for each sensitive attribute and ensures statistical parity
of models.
Definition 2 (Equalized Odds) If the value of z can not
influence the positive outcome for samples given y, i.e.
ŷ = 1 ⊥ z|y, then the classifier satisfies equalized odds:

P (ŷ = 1|y, z = −1) = P (ŷ = 1|y, z = 1), y = {−1, 1}. (2)

Equalized odds mean that positive output is statistically
independent of the sensitive attribute given the target la-
bel. Samples in both the privileged and unprivileged groups
have the same false positive rate and false negative rate.
Equalized odds ensure the predictive parity of models.

4. Method
In this section, we will first describe the overview of our

method, and then detail the design of the proposed method.
Finally, we will further discuss the training strategy and de-
tails of our method.

4.1. Overview

The metric of the existing pruning methods puts more
emphasis on prohibiting the degrading of accuracy instead
of explicitly taking fairness into consideration. With that,
biased neurons can still play negative roles in the com-
pressed networks. Therefore, the unfairness in the com-
pressed network could be largely due to the remaining bi-
ased connections after network pruning. Based on these
analyses, in order to improve fairness while maintaining
performance and efficiency, the key of our method is to
appropriately prune both biased and redundant connections
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between model neurons. Specifically, we leverage the ad-
versarial scheme on model pruning to construct a two-
player game against model fairness and accuracy, which
help us to locate and prune the redundant and biased con-
nections to achieve substantial improvement in model fair-
ness and sacrifice performance as little as possible.

The pipeline of the proposed method is shown in Figure
2, consisting of two learnable components: 1) the generator
that prunes the network based on both performance and fair-
ness, and 2) the discriminator that distinguishes the correla-
tion between model predictions and the sensitive attribute.
The generator is assumed to be a compressed network that
is trained against the discriminator. Sharing the spirit of ad-
versarial training, the discriminator is trained to distinguish
correlations between sensitive attributes and model predic-
tion, while the generator learns to fail the discriminator, thus
guiding the pruning to search biased and redundant connec-
tions between neurons.

4.2. Fairness-aware Adversarial Pruning

In this part, we detail the loss functions of the method
and the design of the discriminator mentioned above. As
illustrated in Fig. 2, we assume the generator to be a com-
pressed classification model f . Given an input x, whose
target label is y, the predicted label ŷ = f (x). The dis-
criminator D is applied on predicted label ŷ to distinguish
a certain sensitive attribute z, and the generator G guides
the pruned network to make fair and accurate predictions ŷ
based on input x.

Loss function of D: Intuitively, with a compressed
model, the unfairness is mainly caused by the accuracy-
prioritized pruning metric which still remains the strong
correlation between predicted labels and the sensitive at-
tribute after network pruning. Thus, the compressed net-
work tends to become biased to the sensitive attribute as
the original. Based on the above analysis, we first need to
train the discriminator D to distinguish predictions ŷ from
one sensitive group z from others. With a well-trained dis-
criminator D, the biased correlation between predicted la-
bel ŷ and sensitive attribute z could be weakened. The de-
tailed design of discriminator D is closely related to the
fairness metrics considered. Here we consider two fairness
constraints, i.e., DI (Disparate Impact), and DEO (Equal-
ized Odds), which are widely adopted in the classification
model. We design functions Lfair for Discriminator D,
which includes Lfair

DI and Lfair
DEO to for fairness metrics DI

and DEO respectively.

For the fairness metric DI, the sensitive attribute z should
be independent of the predicted label ŷ. Therefore, the dis-
criminator D should ensure the equal probability of the pre-
dicted label ŷ given the sensitive attribute z. Therefore, the

discriminator loss for DI can be expressed as:

Lfair
DI =

∑
z∈Z

∑
i:z(i)=z

1

m
logD

(
ŷ(i)

)
, (3)

where Z denotes the set of sensitive attributes and m de-
notes the number of samples.

For the fairness metric DEO, the positive output of pre-
dicted label ŷ should be independent of the sensitive at-
tribute z given the target label y. The discriminator D guar-
antees the equal probability of predicted label ŷ given the
sensitive attribute z based on the condition of target label y.
Therefore, the discriminator loss for DEO can be expressed
as below:

Lfair
DEO =

∑
y∈Y

∑
z∈Z

∑
i:(y(i),z(i))=(y,z)

1

m
logDz|y

(
ŷ(i)

)
,

(4)
where Z , Y denotes the set of sensitive attributes and target
labels respectively and m represents the number of samples.
Note that discriminator here Dz|y can be further denoted as
Dz|y=1(·), . . . , Dz|y=|Y|(·) which is conditioned on target
label y.

Overall, loss function of D can be formulated as below:

LD = α× Lfair
DI + (1− α)× Lfair

DEO, (5)

where α ∈ [0, 1]. The α is set to 1 for fairness metric DI
and the α is set to 0 for fairness metric DEO, respectively.

Loss function of G: By contrast, the generator G aims
to fail D, and an intuitive solution is to maximize the loss of
discriminator D. The training of generator G is the network
pruning process in our method. Through the pruning step,
we obtain a binary mask m̂, which determines which con-
nections are fairness-related and over-parameterized. We
achieve this by integrating the fairness training objective in
the pruning strategy itself by formulating it as the following:

LG = Lprune (fθ⊙m̂(x), y)− LD, (6)

where θ ⊙ m̂ refers to the element-wise multiplication of
mask m̂ with weight parameter θ of network f , Lfair

denotes one of the loss functions Lfair
DI and Lfair

DEO, and
Lprune is classification loss, e.g., cross-entropy loss. The
learning of binary pruning mask m̂ is formulated as:

m̂ = argmin
m̂∈{0,1}N

LG s.t. ∥m̂∥0 ≤ k, (7)

where N is the total number of network weights and k is
the number of remaining weights. The predefined pruning
ratio of the network can be written as

(
1− k

N

)
.

4.3. Training Algorithm

Based on the Eq. 3, Eq. 4, and Eq. 7, the generator and
discriminator are optimized alternatively. The generator G
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Algorithm 1: Fairness-aware network pruning
Input: Training data D, Number of remaining
weights k, Maximum iteration T , Discriminator D,
Pre-trained neural network f parameterized θ, Loss
objective: Lprune, Lfair(i.e. Lfair

DI , Lfair
DEO), Binary

pruning mask m̂, Hyper-parameter α.
Output: Compressed network θcompress

1 Initialize discriminator D and pruning mask m̂.
2 for t← 0 to T do
3 Sample a batch of n inputs x, labels y and

attributes z from D
4 Calculate discriminator loss LD:
5 LD = α× LDI

fair + (1− α)× LDEO
fair

6 Update discriminator D:
7 D ← D − ηD∇DLD

8 Calculate pruning loss LG:
9 LG = Lprune −α×LDI

fair − (1−α)×LDEO
fair

10 Get binary pruning mask m̂:
11 m̂ = argmin

m̂
LG s.t. ∥m̂∥0 ≤ k

12 Prune network f via pruning mask m̂:
13 f = fθ⊙m̂

14 end

plays a min-max game with D where D maximizes the abil-
ity to predict a correlation between predicted label ŷ and
sensitive attribute z while G tries to minimize its ability. At
the same time, G tries to let the compressed network f still
recognize the right target label.

5. Experiment

In this section, we first describe our experimental
setup. Then, we evaluate the proposed method on differ-
ent datasets. Finally, we investigate the ablation effect of
network architecture and pruning ratio.

5.1. Experimental Setup

Datasets. We adopt two face datasets in our evaluation,
i.e., CelebA [21] and LFW [14], which carry those com-
monly protected attributes like gender. In CelebA, we take
gender as the protected attribute to measure the fairness of
model prediction for target labels and choose Attractive and
Blond Hair as target labels. In LFW, we choose Smiling and
Young as target labels and gender as the sensitive attribute.
Evaluation metrics. For fairness evaluation, we use the dif-
ference in disparate impact (DI) and the difference in equal-
ized odds (DEO) to evaluate model fairness. Meanwhile,
the accuracy (ACC) of predicting target labels will also be
reported. We demonstrate the effectiveness of the proposed
method by comparing models pruned by our method with
full-sized models normally trained on DI, DEO, and accu-

racy. A higher DI and a lower DEO indicate that the sam-
ples in the privileged group are treated equally as those in
the unprivileged group.
Baselines. We compare our method with three classes
of baselines. The first class is training with the full-size
network, i.e., Normal Training and Adversarial Debias-
ing [42]. The second class is existing pruning techniques,
where we choose two kinds of typical approaches: gradient-
based [28] (SGDP) and magnitude-based [10] (LMW) prun-
ing method. The third class is the combination of existing
unfairness mitigation and pruning techniques (Fair-SGDP,
Fair-LMW). We first utilize Adversarial Debiasing [42] as
pre-processing to obtain an unbiased network and then em-
ploy pruning approaches on the debiased network. More
details can be referred to Supplementary Material.
Training details. We experiment with ResNet-18 [12] net-
work architecture. In the pre-training stage, we train the
model for 30 epochs with a batch size of 64 using Adam
optimizer with a learning rate of 1e-4. In the fairness-aware
pruning stage, the settings of network pruning which is the
generator in the algorithm, follow the gradient-based prun-
ing method [28]. The architecture of discriminator is a neu-
ral network with one hidden layer and there are 8 nodes in
the hidden layer. We train the discriminator with Adam op-
timizer with a learning rate of 0.001. More details of train-
ing can be referred to Supplementary Material.

5.2. Evaluation

As shown in Tab. 2 and Tab. 3, our method effectively
mitigates unfairness and maintains accuracy after network
pruning on various datasets. For instance, DEO reduces
from 0.5352 to 0.2149 and DI increases from 0.3144 to
0.4849 after pruning 80% parameters in Tab. 2a and Tab 3a
while the accuracy negligibly drops less than 1%. As com-
pared to Adversarial Debiasing [42] without pruning, the
gaps between it and ours are just 0.0535 and 0.0133 on
DEO and DI, respectively. It demonstrates that our method
largely improves model fairness while not explicitly harm-
ing the accuracy and efficiency after pruning a large number
of parameters.

Compared with training a sparse network with 20% pa-
rameters from scratch, our method outperforms in terms of
both model fairness and accuracy. It can be observed in
Tab. 2c that our method is 0.2824 lower and 0.12% higher
on DEO and accuracy, respectively. This indicates that it
is challenging to train a well-performing and fair spare net-
work from scratch and our method proposes an effective
solution.

Compared with SOTA network pruning methods, i.e.,
SGDP [28] and LMW [10], our method substantially ame-
liorates the fairness of compressed model and achieves
comparable accuracy. As shown in Tab. 3b, the increase in
DI is less than 0.07 after pruning by SGDP and LMW, how-
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Attractive PR. ACC ↑ DEO ↓
Normal training 0% 81.68% 0.5352

Adversarial Debiasing [42] 80.24% 0.1614

Train from Scratch
80%

78.73% 0.5071
SGDP [28] 81.48% 0.4991
LMW [10] 78.51% 0.5041

Fair-SGDP
80%

79.18% 0.3261
Fair-LMW 78.66% 0.3640

Ours 81.00% 0.2149

(a) Results on CelebA when the target label is Attractive

Wavy Hair PR. ACC ↑ DEO ↓
Normal training 0% 79.64% 0.1297

Adversarial Debiasing [42] 74.02% 0.0541

Train from Scratch
80%

79.16% 0.1161
SGDP [28] 74.76% 0.1094
LMW [10] 73.44% 0.0774

Fair-SGDP
80%

79.32% 0.0729
Fair-LMW 74.44% 0.1004

Ours 77.62% 0.0576

(b) Results on LFW when the target label is Wavy Hair

Blond Hair PR. ACC ↑ DEO ↓
Normal training 0% 95.38% 0.5027

Adversarial Debiasing [42] 94.80% 0.2399

Train from Scratch
80%

94.80% 0.5401
SGDP [28] 95.32% 0.4800
LMW [10] 94.68% 0.4615

Fair-SGDP
80%

94.61% 0.4067
Fair-LMW 94.22% 0.4076

Ours 94.92% 0.2580

(c) Results when on CelebA the target label is Blond Hair

Young PR. ACC ↑ DEO ↓
Normal training 0% 82.98% 0.5302

Adversarial Debiasing [42] 81.76% 0.1484

Train from Scratch
80%

82.87% 0.4813
SGDP [28] 82.56% 0.4033
LMW [10] 80.06% 0.4561

Fair-SGDP
80%

81.55% 0.3676
Fair-LMW 81.60% 0.3099

Ours 80.97% 0.2064

(d) Results on LFW when the target label is Young

Table 2: Results of our method FARPrune on DEO improvement of CelebA and LFW dataset. PR. denotes the pruning ratio,
the higher, the more efficient the model. For fairness criterion, the lower DEO, the more fair the model.

Attractive PR. ACC ↑ DI ↑
Normal training 0% 81.68% 0.3144

Adversarial Debiasing [42] 80.24% 0.4982

Train from Scratch
80%

78.36% 0.3802
SGDP [28] 81.48% 0.2735
LMW [10] 78.39% 0.3825

Fair-SGDP
80%

77.44% 0.4733
Fair-LMW 79.17% 0.4419

Ours 80.66% 0.4849

(a) Results on CelebA when the target label is Attractive

Wavy Hair PR. ACC ↑ DI ↑
Normal training 0% 79.64% 0.7344

Adversarial Debiasing [42] 74.02% 0.8533

Train from Scratch
80%

79.00% 0.7743
SGDP [28] 78.47% 0.8050
LMW [10] 73.38% 0.7838

Fair-SGDP
80%

79.43% 0.8105
Fair-LMW 74.39% 0.8471

Ours 77.25% 0.9297

(b) Results on LFW when the target label is Wavy Hair

Blond Hair PR. ACC ↑ DI ↑
Normal training 0% 95.38% 0.0546

Adversarial Debiasing [42] 94.80% 0.1729

Train from Scratch
80%

94.61% 0.0704
SGDP [28] 95.32% 0.0765
LMW [10] 94.64% 0.0875

Fair-SGDP
80%

94.61% 0.1115
Fair-LMW 94.22% 0.1188

Ours 94.80% 0.1181

(c) Results on CelebA when the target label is Blond Hair

Young PR. ACC ↑ DI ↑
Normal training 0% 82.98% 0.2032

Adversarial Debiasing [42] 81.76% 0.3178

Train from Scratch
80%

82.82% 0.2239
SGDP [28] 80.06% 0.2883
LMW [10] 80.81% 0.2065

Fair-SGDP
80%

79.64% 0.2290
Fair-LMW 79.22% 0.2259

Ours 80.54% 0.3116

(d) Results on LFW when the target label is Young

Table 3: Results of our method FAPRune on DI improvement of CelebA and LFW dataset. PR. denotes the pruning ratio,
the higher PR., the more efficient the model. For fairness criterion, the higher DI, the more fair the model.
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ever, our method achieves an increase of nearly 0.2. This
indicates that the proposed method formulates model fair-
ness as an explicit objective in network pruning which ef-
fectively searches the biased connections.

Compared with the combination of unfairness mitigation
and network pruning, i.e., Fair-SGDP and Fair-LMW, we
propose an outperforming method that achieves improve-
ments in model fairness and maintenance of accuracy for
compressed networks. As shown in Tab. 2d, our method
achieves the lowest DEO and comparable accuracy after
network pruning. Moreover, our method employs adver-
sarial training to achieve an end-to-end pipeline, which is
more efficient than the two-stage combination.

Extensive experiments demonstrate that our method sig-
nificantly improves model fairness and preserves accuracy
and efficiency after pruning a large number of network pa-
rameters.

PR. ACC ↑ DI ↑
0% 81.68% 0.3144

70% 79.18% 0.4903
80% 80.66% 0.4849
90% 80.66% 0.4244
95% 81.51% 0.3891

PR. ACC ↑ DEO ↓
0% 81.68% 0.5352

70% 81.37% 0.2181
80% 81.00% 0.2149
90% 81.03% 0.3143
95% 80.88% 0.3215

Table 4: Accuracy and fairness of ResNet-18 networks on
CelebA at different sparsity levels. The target label is At-
tractive and the sensitive attribute is Gender.

5.3. Ablation Study

In this section, we would like to validate generalization
of our method by analyzing the factor of hyper-parameters,
including the pruning ratio and network architecture.
On Pruning Ratio. We conduct experiments on CelebA
dataset and set Attractive as the target label and Gender as
the sensitive attribute. We compress ResNet-18 network un-
der various pruning ratios, e.g., 70%, 80%, 90%, and 95%.
Tab. 4 demonstrates that our method effectively ameliorates
the fairness of the pre-trained model across different prun-
ing ratios. We also observe that both the accuracy and fair-
ness metrics, i.e., DI and DEO perform better at relatively
lower pruning ratios. It can be explained that a higher prun-
ing ratio would prune some meaningful and unbiased con-
nections, which degrades performance and fairness. Tab. 4
shows 70% and 80% is optimal for CelebA dataset.
On Network Architecture. We conduct experiments on
different network architectures, including ResNet18, Shuf-
fleNet v2, and MobileNet v2. We set the pruning ratio as
80%. As shown in Tab. 5, our method consistently main-
tains comparable accuracy and improves fairness criterion
i.e. DEO and DI after pruning. For instance, our method
improves 0.31 and 0.16 on DEO for ResNet18 and Shuf-
fleNet v2 while only sacrificing 0.68% and 0.93% on ac-
curacy. This indicates that our method generalizes well on

Network ACC ↑ DI ↑
ResNet18 (Dense) 81.68% 0.3144
ResNet18 (80%) 80.66% 0.4849

ShuffleNet v2 (Dense) 79.34% 0.3566
ShuffleNet v2 (80%) 78.58% 0.4808

MobileNet v2 (Dense) 81.63% 0.2893
MobileNet v2 (80%) 79.96% 0.4560

(a) Accuracy and DI of different network architectures.

Network ACC ↑ DEO ↓
ResNet18 (Dense) 81.68% 0.5352
ResNet18 (80%) 81.00% 0.2149

ShuffleNet v2 (Dense) 79.34% 0.5086
ShuffleNet v2 (80%) 78.41% 0.3582

MobileNet v2 (Dense) 81.63% 0.5229
MobileNet v2 (80%) 78.06% 0.3390

(b) Accuracy and DEO of different network architectures.

Table 5: Accuracy and fairness of different network archi-
tectures on CelebA. Target and sensitive label is Attractive
and Gender, respectively.

various network architectures.

5.4. Searching fair sub-networks within randomly
initialized networks without model training

We have already demonstrated that the success of our
method stems from finding a set of connections which,
when pruned, incurs the least degradation of accuracy and
ameliorates the fairness of the pre-trained network. Can we
find fair sub-networks within randomly initialized networks
without any model training? To answer this question, we
use our method to prune a fair sub-network from a ran-
domly initialized network. These results are presented in
Tab. 6 where the pruning ratio for each sub-network is 80%
and 90% with the ResNet-18 network on CelebA dataset.

Our results show that there exist sub-networks with in-
born, matching, or surpassing the fairness of the debi-
ased networks with comparable model size, within ran-
domly initialized networks without any model training. As
shown in Tab. 6d, the sub-network through our method
achieves 0.3073, 0.0484 lower on DEO than normally pre-
trained, adversarially debiased network with comparable
model size. Furthermore, we demonstrate the consistent ex-
istence of fair sub-networks under different sparsity patterns
in Tab. 3. We effectively search fair sub-networks under dif-
ferent pruning ratios on different fairness criteria, e.g., DI
and DEO. It can be observed that pruning less or more con-
nections, e.g., less than 75% or more than 90%, would harm
both accuracy and fairness compared to moderate pruning
ratios, e.g., 80% and 85%.

We demonstrate that our method can effectively search
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Attractive PR. ACC ↑ DI↑
Normal Training 0% 81.68% 0.3144

Adversarial Debiasing [42] 0% 76.17% 0.6126

SGDP [28] 80% 77.60% 0.4293
Ours 80% 77.08% 0.5351

SGDP [28] 90% 77.15% 0.3355
Ours 90% 77.26% 0.5015

(a) Results when the target label is Attractive

Attractive PR. ACC ↑ DEO↓
Normal Training 0% 81.68% 0.5352

Adversarial Debiasing [42] 0% 78.77% 0.1551

SGDP [28] 80% 73.79% 0.4418
Ours 80% 78.40% 0.1959

SGDP [28] 90% 78.27% 0.4675
Ours 90% 76.18% 0.3444

(b) Results when the target label is Attractive

Smiling PR. ACC ↑ DI↑
Normal Training 0% 92.50% 0.7090

Adversarial Debiasing [42] 0% 90.91% 0.7557

SGDP [28] 80% 90.78% 0.6604
Ours 80% 90.17% 0.7895

SGDP [28] 90% 92.54% 0.7115
Ours 90% 90.94% 0.7678

(c) Results when the target label is Smiling

Blond Hair PR. ACC ↑ DEO↓
Normal Training 0% 95.38% 0.5027

Adversarial Debiasing [42] 0% 94.19% 0.2438

SGDP [28] 80% 94.18% 0.4467
Ours 80% 94.12% 0.1954

SGDP [28] 90% 95.37% 0.4845
Ours 90% 93.52% 0.3939

(d) Results when the target label is Blond Hair

Table 6: Illustration of the existence of fair sub-networks within unfair randomly initialized networks. We demonstrate the
accuracy and fairness metrics DI and DEO of sub-networks with different pruning ratios in ResNet-18 on CelebA with the
sensitive attribute Gender.
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Figure 3: Illustrating consistent existence of fair sub-networks within unfair networks with different pruning ratios in ResNet-
18 on CelebA. The sensitive attribute is gender. The accuracies and fairness criterion of trained original dense networks are
annotated using dashed lines.

fair sub-networks within the randomly initialized networks
without any model training. This is attributed to the pro-
posed searching process which ensures the searched sub-
networks effectively identify redundant and biased weight
locations. This indicates that searching for the locations of
a subset of weights within a randomly initialized network
might be potentially as effective as adversarially debiasing
the weight values in the comparable model sizes.

6. Conclusion

In this work, we study the interplay between neural net-
work pruning and fair training objective. We propose to
integrate the fair training objective in the pruning technique
itself by formulating pruning and debiasing as a two-player
adversarial game and enhancing fairness while preserving

the accuracy and efficiency of network pruning. Our pro-
posed method consistently performs well across different
datasets, network architectures, and pruning ratios. More-
over, we show for the first time that there exist fair sub-
networks within randomly initialized networks without any
model training. In further work, we would like to go deeper
into exploring the existence of and systematically studying
the properties of such sub-networks across different net-
work architectures and hyper-parameters
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