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With the rapid growth in smartphone usage, it has been more and more important to understand the patterns of mobile data
consumption by users. In this paper, we present an empirical study of the correlation between user mobility and app usage
patterns. In particular, we focus on users’ moving speed as the key mobility metric, and try to answer the following question:
are there any notable relations between moving speed and the app usage patterns? Our study is based on a real-world,
large-scale dataset of 2G phone network data request records. A critical challenge was that the raw data records are rather
coarse-grained. More specifically, unlike GPS traces, the exact locations of users were not readily available. We inferred
users’ approximate locations according to their interactions with nearby cell towers, whose locations were known. We
proposed a novel method to filter out noises and perform reliable speed estimation. We verify our methodology with out of
sample data and show its improvement in speed estimation accuracy. We then examined several aspects of mobile data usage
patterns, including the data volume, the access frequency, and the app categories, to reveal the correlation between these
patterns and users’ moving speed. Experimental results based on our large-scale real-world datasets revealed that users under
different mobility categories not only have different smartphone usage motivations but also have different ways of using their
smartphones.
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1 INTRODUCTION

In the past decade, the use of smartphones has grown tremendously among consumers. According to a recent
report [6], there were 3.4 billion smartphone users worldwide, and the accumulated mobile data traffic reached
120 exabytes in 2015. Alongside this explosive growth in mobile data traffic is the popularity of smartphone apps,
such as those served by Google Play and Apple Store, whose number has exceeded 1.5 million by July 2015 [29].
It is estimated that people spend as much as 30 hours monthly on average on these apps, a growth of over 65
percent compared to 2013 [19].

Recent research has invested considerable efforts to understand smartphone app usage behavior, which can
inform app developers, mobile advertisers, and network service providers [39, 42]. For example, both temporal
patterns (e.g., individual app usage histories) and spatial patterns (e.g., location contexts) have been extensively
studied [17]. Their results have enabled novel applications, such as smartphone app launching prediction
services [41] and location-aware event recommendations.

These studies, in spite of their usefulness, usually require fine-grained data. When only coarse-grained
datasets are available, smart algorithms are needed to extract useful information. In particular, as the cellular
data are commonly collected, it would be useful to design processing algorithms to extract and exploit useful
mobility features from these datasets. At a large-scale (i.e., city-wide), we would like to understand user mobility
and investigate how this feature correlates with the usage patterns of smartphone apps. Understanding such
correlations, if any, can provide useful insights on how users are using their smartphones, such as the unique
characteristics of smartphone usage for users on different mobility modes, including stationary, walking, driving,
or taking buses. Knowing such correlations can not only help app designers analyze and improve their apps in
a more guided manner but also provide much-needed assistance to network operators to optimize in-the-field
operations. Finally, our study can also provide valuable results for commercial use. For example, by knowing the
users’ app preference on different mobility modes, advertisers can deliver more relevant ads based on the current
mobility mode of a user.

Unfortunately, previous work on this topic has only investigated this problem in highly limited and controlled
contexts, taking into account the usage history of a small set of users. For example, a few works have addressed
the problem of transportation mode inference, with location information collected using more accurate hardware
(e.g., GPS, sensors) from a small group of users in controlled experiments [3, 21, 22, 25, 30, 32, 37, 44]. Later work
suggested that it may be possible to use cell tower communications to monitor users’ mobility indirectly [24],
where efforts have been focused on inferring users’ trajectories [11, 18] or transportation mode [2, 34] using
cell-phone traces (e.g., Call Detail Records, handover data) that do not directly contain location information. A
limitation of these approaches, however, is that they are usually small-scale by nature, and the data collected
were much cleaner given the controlled environment, making the proposed techniques impractical for real-world
large-scale data. Our work follows the latter line of research, using large-scale cell-phone tower traces, with
significant differences. First, our dataset consists of a truly large population, where we have access to mobile data
access histories of millions of users in three cities that cover thousands of square miles. Second, our research goal
is to reveal large-scale, population-level correlations, if any, between user mobility and app usage patterns, a goal
that has not been addressed in any of previous research work.

We addressed the following two challenges in our work. First, to infer user mobility with cell-phone traces, we
needed to filter the location history to obtain accurate estimates. In our dataset, the only location information
available was the location of each cell tower. By communication principles, we know that a user’s phone typically
contacts towers with the best signal reception, which usually are the nearest ones. After surveying previous
work on estimating trajectories based on similar datasets [10, 11, 18, 28, 38] or finding mobility motifs [7, 36], we
could not find a technique that suited our needs as their results were clearly too coarse-grained for our data. For
example, one study was based on users who performed daily commute or took city-to-city long-distance trips. In
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contrast, our data were in dense urban areas where users employed a mixture of transportation modes ranging
from walking, bicycles, to buses and cars (railway transportation was not present in our dataset). Therefore, we
needed to develop a novel method to estimate more complicated user mobility behaviors for our dataset. Second,
to effectively correlate app usage history with mobility patterns, we had to strike a tradeoff between the most
popular apps and the sparingly used ones. More specifically, we found that a majority of users used “heavy-hitter”
apps irrespective of their mobility modes. Inferring such correlations were less meaningful. Therefore, we focused
on app groups where data exhibit differentiated popularity for users with different moving speeds, a task that was
considerably more challenging than simply performing correlation analysis between all apps and all users without
differentiation. We emphasize, however, that due to the data limitations (i.e., being extremely coarse-grained
and heterogeneous and the absence of ground truth), all our conclusions are, at best, educated guesses that are
based on real-world data. We believe such results are meaningful and insightful for a wide range of people: app
developers, advertisers, network operators, and smartphone users.

The main contributions of this paper can be summarized as follows. We designed and evaluated a novel method
to infer user speeds with cell-phone traces with low location accuracies. Compared to existing approaches, this
method achieved far better and fine-grained estimation with adjustable confidence levels. Specifically, to overcome
the problem of location accuracy, our method involved steps to segment traces by pass-boundary events. When
a user establishes a new connection with a different tower, and performs intra-cell level zooming and analysis
to calculate distance estimates. This method was also robust against issues caused by the uncertain nature of
wireless communications, e.g., a user located in the overlapped communication coverage area of multiple towers
may randomly communicate with each tower, causing cell oscillations that other simple methods cannot easily
address. With the more accurate speed estimates, we were able to study the correlation of user mobility with
app usage patterns in the real-world environment. Our results revealed correlations of user speed and mobile
data access patterns, including data volumes, access frequency, and app choice. The results are novel in that no
previous work, to the best of our knowledge, has gained similar insights or reported findings in this aspect.

The rest of this paper is organized as follows. In Section 2, we describe previous works on user mobility
inference and geospatial app usage patterns. Section 3 defines our problem and provides details on the mobile
data access trace we use in this paper. We describe our speed estimation methodology and design in Section 4. An
objective evaluation of our speed estimation algorithm is presented in Section 5. Section 6 explains our findings
on the correlation of user speeds and mobile data access patterns. We discuss the limitations of our work in
Section 7. Finally, we conclude our work in Section 8.

2 RELATED WORK

In this section, we summarize recent literature on smartphone apps, user mobility, and geospatial analysis of
mobile phone apps data.

To study the smartphone app usage behavior of a large group of users, previous work has analyzed mobile
data traces generated by smartphone apps in studies of various scales. [42] studied the mobile user behavior
by focusing on data usage, mobility pattern and application usage. In [39], the aggregated spatial and temporal
prevalence, locality and correlation of smartphone apps at a national scale is investigated, by analyzing the mobile
data generated by smartphone apps. [4] performed a deployment-based study over 4,100 users of Android mobile
devices and showed both basic app usage patterns and contextual app usage patterns. Unlike our work, these
previous work have not studied the relation of mobile user behavior with more complex user mobility, i.e., user
speed.

Using GPS [3, 21, 22, 25, 30, 32, 37, 44] and embedded sensors [9, 16, 21, 22, 27, 31, 35], a separate body of research
is able to use smartphones to infer user mobility patterns accurately in small-scale, controlled experiments, such
as inferring transportation modes. Most of these works formulate the problem as a classification problem, where
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common challenges involve data segmentation [3, 21, 32, 44], feature selection [3, 30, 35, 44]. Multiple methods,
such as SVM or linear regressions, are developed to achieve the best accuracy.

Although GPS and sensors are well suited for small-scale experiments, they are not scalable as users typically
do not want their GPS traces to be shared with others. In recent work [24], it is revealed that there is a great
potential for using cell-phone data traces such as Call Detail Records (CDRs) for user mobility inference. A large
body of research literature exists applying this method for inferring user’s trajectories [2, 10, 11, 15, 18, 28, 38] or
mobility motifs [7, 36]. For example, [11, 18] inferred user trajectories from cell-phone traces based on how likely
a specific route can lead to similar tower access sequences stored in the data traces. In another work [34], it aims to
classify a user’s transportation mode by clustering travel time distribution. Finally, researchers [2] also proposed
approaches that can deal with common zig-zag problems in inferring user mobility from smartphone traces.
Different from these existing methods, however, our approach takes advantage of the scalability of cell-phone
data traces and achieves fine-grained user mobility inference on top of it.

Studying correlations between app usage and features extracted from phone traces is not new in the literature.
Previous work has studied relations of human mobility and social networks using geospatial features. For example,
a work [5] found that the short-ranged travels are periodic and not likely to be related to the social network
structures, while long-distance travels are heavily related to the social network status of a user. Based on these
findings, a model was proposed to predict dynamics of future human movement with a high accuracy. Follow-up
works such as [20] studied a similar problem with a different dataset. [26, 42] studied the geospatial relation of
the app usage volume. Their works mostly studied the spatial correlation of the smartphone usage, while the
user mobility’s impact on app usage is still a missing piece of these works. [17] studied how the proximity, the
location and individual differences (e.g., personality) can affect the user’s mobile data usage. Finally, [43] showed
the apps access pattern under various user mobility properties such as the number of visited cell phone towers
and the radius of gyration. However, analysis of much complex user mobility such as user speed is still a missing
piece in these works.

Another aspect addressed in the literature is related to the tradeoffs adopting either cellular network data or
WiFi data. Although recent studies [1, 14] have shown that WiFi handles half of the mobile data traffic, it has
been observed that cell phone networks typically have much better coverage and user mobility diversity [33, 40].
Furthermore, it is practically impossible to collect city-level WiFi data due to the heterogeneous nature of access
points and privacy concerns. Therefore, it is more meaningful to study large-scale user mobility under cellular
traffic, as is the methodology followed by this paper.

3 DATA DESCRIPTION

In this section, we describe the dataset, followed by an example of a user’s data.

3.1 Dataset

Our dataset contains mobile data access history of all active users (during a Sunday evening from 6 pm to 9 pm)
of a major mobile carrier in three cities of China in September 2014. The data was collected by the carrier at the
cell tower side. For each user, all data request records during the study period are available, where each record
consists of the user ID (a hashed value for anonymity), the tower ID (from which we were able to look up its
geo-coordinates), the timestamp, the app identifier, and other data access features such as data volumes.

The dataset includes more than 58 million mobile data access records with a total volume of more than 720
gigabytes, which covers all cell phones that were actively exchanging data with a total of 5199 cell towers in the
area during the observation period. The number of unique users included in this dataset is identified as around
900 thousand. The total active time of all users accumulates to more than 1 million hours. Fig. 1 shows a heatmap
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Fig. 1. Communication density in a city area.

of the mobile data access in a city area of our dataset. The dataset contains both user-initiated network access
and background network access.

3.2 Data Preprocessing Findings

We first preprocess the data and analyze the characteristics of mobile data access patterns. Distributional
characteristics are visualized in Fig. 2. In particular, the number of records per user, the average time intervals
between consecutive records, and the number of towers visited. We found that our dataset has a highly skewed
distribution of the number of records per user, as shown in Fig. 2(a), and the time intervals between consecutive
records, as shown in Fig. 2(b). Here, a higher record density, i.e., more records for a user in a time unit, indicates
a better performance to infer user mobility even when the trip length is very short, as we can obtain a better
granularity by analyzing these records. Actually, it is the case that most user only traveled a very short trip
regarding the number of visited towers according to Fig. 2(c).
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Fig. 2. Dataset characteristics.

Note that our dataset differs from commonly used mobility datasets used in existing work. Compared to moving
trajectories like those captured by GPS, we do not know the exact locations of the users, and we only know a
user is located nearby a tower to communicate with it. Furthermore, compared to other datasets with call detail
records (CDR), our dataset is drawn from a region with more densely populated customers, where each may
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adopt different mobility methods such as walking, driving, or taking buses. Such differences make it harder to
accurately estimate user speed based on existing methods.

3.3 An Example User’s Traces

Real trajectory

order

Tower | | - A — |B|
Record ||| [1[1 [ [ DOMC ROCC O 00 0 I I

Fig. 3. Example data access activities of a user.

———

To provide a clear view of our data, we visualize a user’s records from our dataset in Fig. 3 as a running example.
Suppose that the user was taking the path (while using the cell phone) shown with the dashed line. In particular,
she started by walking from location 1 to location 2 where she waited for the bus. After a few minutes, she got
onto the bus, which took the path towards location 3. Even though we did not know the actual path of the user,
her locations could be inferred by the nearby towers to which her communication data were sent to.

Since the locations of cell towers are known, we illustrate the tower locations on a map. We use markers to
show tower locations and arrowed lines to show the sequence of visiting. The bottom part of Fig. 3 shows the
timeline of the user’s data access records. We also show the tower with which the user has communicated for
each mobile data access record, by providing tower labels above. For this particular user, she communicated with
tower A for a while, and shortly connected to tower B before switching to tower C. After that, the user was found
again in tower D’s coverage area. Then she was connected to tower E for a very short time, indicating a possible
cell oscillation, and finally, she switched back to tower D.
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4 SPEED ESTIMATION

In this section, we systematically describe our methodology for estimating user mobility speed using coarse-
grained tower communication records and timestamps.

4.1 Methodology Overview

Our methods consist of multiple steps, where we first decompose traces of each user into segments to zoom
into intra-cell speed estimation. Next, we estimate the distance and the travel time for each segment, where we
employ a distance lower bound to filter out low-confidence estimates. In practice, such estimates are usually too
noisy to be meaningful or reliable. Finally, we demonstrate how to compensate for speed estimation errors. Fig. 4
shows the structural overview of this methodology. The raw data parser on one end of this figure gathers data
access records by users and sorts records of each user by time. On the other end, a list of tower locations from the
mobile data access traces is extracted. Note that the system assigns a list for each city during processing steps.

records est. distances &
\ \ PBE discovery Distance estimation travel times

Speed
compensation

Raw trace parse

Speed estimation

X7

distance LBs

tower locations boundaries

Fig. 4. Speed estimation system overview.

After we have parsed raw traces, we next process them in different steps in parallel. In one of the next steps, we
analyze traces of each user and generate pass-boundary events (PBE) with the timestamp and location estimates
of each record. Based on these events, we can estimate intra-cell travel distances and time accordingly.

In the second sequence of steps, we process the tower list for each city, by generating a Voronoi diagram based
on tower coordinates. Here, Voronoi diagrams are used to simulate the tower coverage map, based on which we
calculate all intra-cell boundary-to-boundary distance lower bounds. We keep such bounds in a separate list for
lookup needs.

Finally, at the end of both processing sequences, we aggregate their results to estimate each user’s speed
distributions. We observe that for some segments, we do not have sufficient location information to accurately
estimate a particular user’s speed. Under such scenarios, we develop a compensation step where we try to infer
the most likely speed based on speed distributions of this user in adjacent segments. The assumption is that one
user will not change speed too much in short distances. We next discuss each component in more details in the
following sections.

4.2 Data Segmentation by Identifying Pass-Boundary Events

As a user could be anywhere inside the tower’s coverage area, we need to infer their speeds by exploiting multiple
coverage areas. To this end, we first decompose the trace into segments, which we call “pass-boundary events”
(PBE).

Formally, a PBE is defined as when a user moving from one tower’s coverage cell into an adjacent tower’s
coverage cell. There are two properties related to a PBE: first, each PBE has a boundary area, which is the
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Fig. 5. A pass-boundary event.

Time Line

overlapping coverage area of two towers; second, each PBE is associated with a time period of the user spent on
crossing the boundary area. For example, in Fig. 5, the PBE event is associated with a boundary as the shadowed
area, while its associated time period is (t;, t;) for entering and leaving this shadow area.

We now describe the algorithm on extracting PBEs from the mobile data access traces. For arbitrary two
consecutive records r; and r; of a user with [; and [; as their location estimates respectively, if [; # [;, we define a
PBE, denoted by P; ; as follows:

Pij=(ri,rj)
We denote the boundary of P; j, which is the overlapped area, as (1, ;). We use (t;/%,¢,/15!) as an estimate of
the time period of entering and leaving P; ;, where t;/%! is the last record timestamp in [;, and tjf irst s the first
record timestamp in [;. The length of the time period of P; ; is bounded by tjf irst _ t;1ast Once PBEs are defined,
we use them as reference points to decompose mobile data records of each user into segments.

The detailed segmentation algorithm is shown in Algorithm 1. Specifically, the decomposition works as follows:
we first generate the PBEs for each user, and then we consider all records of a user between two consecutive
PBEs as one single stretch of continuous stay as such records should be communicating with the same tower.
Therefore, they should share the same location estimate. Since we do not have observations on the intra-cell
trajectories of user mobility, we consider the user to have the single constant speed for each stretch within a cell,
i.e., between two PBE events. To estimate this speed, we use two consecutive PBEs. Note, however, that as the
first and the last stretches of records only have one PBE each, they will not have speed estimates.

4.3 Distance and Time Estimation

We next describe how we estimate the speed between two PBEs. Specifically, we need to estimate the intra-cell
boundary-to-boundary distance and the travel time. As the only available information for distance estimation is
tower coordinates and tower visiting orders, for a segment with two PBEs P; ; and P; i, we use a straight line
trajectory I; — [; — I that passes all three tower [;, [; and [i as an estimated trajectory. With the coordinates of
towers, the euclidean distance between towers, d(l;, [;) and d(l;, Ix), can be calculated. Since the boundaries are
perpendicular bisectors of lines connecting towers (as we use Voronoi diagrams to represent cell coverage areas),
the travel distance can be estimated by w. Note that if more information such as the underlying road
networks is provided, the road trajectories that has the maximum likelihood to match visited tower sequences
can also be used instead of the straight line trajectories.

The travel time of a segment is calculated by the time difference of two related PBEs. Since each PBE has a time
interval associated with it for entering and leaving the overlapping area, we can calculate a range of possible
values for travel time estimation, including both a tight bound and a relaxed bound. The former one suggests the
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ALGORITHM 1: Data segmentation

Data: Trace: mobile data trace arranged by users u with record entries e sorted by time. Each e has location estimate [,
and timestamp ¢,. We use . to represent location of current entry.
Result: R: segments r arranged by user and time. Its location [, is defined by location of two adjacent PBE. Its time t, is
defined by the time of first data entry and time of last data entry in this segment.
for each u in Trace do
lo « 0;

r—0;

€lastend < 0;

estart < 0;

eend < 0

for each e in Trace[u] do

if I # 0 andl; # [, then
by = (eygsrenaslesle)s tr < (tegrares teena) s
append r to R[u] ;

end

if I =0 orl. # [, then

| elastend < €ends> le < le, estart < e
end

eend «— e,
end
lr — (ejasrenar lesle) tr — (tegpares teena) 5

append r to R[u] ;

end
return R

shortest possible travel time to move through the area, while the latter one indicates the longest possible travel
time. For example, for two PBEs P; ; and P; j with a time interval of (t;1%5¢, tjfi”t) and (tjl‘”t, t;F1rst), respectively,
we can easily derive the tight bound as Aty;gn; = tjlast — ¢;first and the relaxed bound is Atjppse = tif 75t — ;192

4.3.1 Distance Lower Bounds. In this section, we introduce the concept of distance lower bounds. This is
motivated by the observation that it is usually hard to accurately estimate the true distances of users using the
coverage areas of given towers for all possible trajectories and represent them with a single distance estimate. To
see this, we show an example in Fig. 6(a).

As shown in Fig. 6(a), the area is divided into coverage areas of three towers A, B, and C. Solid lines represent
real user trajectories while dashed lines represent the boundaries of towers. Observe that both user 1 and user 2
pass the three towers in the same order A — B — C. The real distance differences, however, are missing due to the
limited location estimation accuracy of using tower locations. Therefore, in such cases, a single distance estimate
will have to fail due to the wide variety of possible trajectories that can lead to the same tower visiting orders.

Faced with this challenge, our next goal is to filter out distance estimates that are not likely to occur in
real-world scenarios, and provide the trajectory that is most likely as the solution. The major step here is to
evaluate the confidence levels of different distance estimates based on estimated trajectories and tower locations
so that such confidence levels can be used as measures for evaluating differences in multiple trajectory lengths.
Specifically, for two consecutive boundary events P; ; and P i, the confidence level of a distance estimate d; is

definedas Cy . = ;#b[, where dj;, is the boundary-to-boundary distance lower bound, i.e., the minimum required

est

distance to travel from the boundary of P; ; to the boundary of P; , which serves as a conservative estimate for
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Fig. 6. Distance estimation methodology. (a) Common cases where a single distance estimate would fail. (b) The voronoi
diagram to represent coverage of each tower. (c) Dealing with virtual boundaries.

the shortest distance a user may travel. Intuitively, the longer an estimated distance is compared to this lower
bound, the less likely it should be as it requires a more complex trajectory shape to be feasible.

In order to calculate the distance lower bound, we first simplify the tower coverage model with the Voronoi
diagram. Then, based on the Voronoi diagram formed by towers’ locations, we calculate the Voronoi cell shapes
with their vertex locations. Fig. 6(b) shows an example of the Voronoi diagram construction with five towers. Each
region in the Voronoi diagram represents the coverage area of one tower, while the edges in Voronoi diagrams are
central focus lines of the overlapping coverage area of towers (such areas are hidden in simple Voronoi diagrams,
but they widely exist in real-world tower communications). The shortest travel distance between boundaries is
therefore transformed into the shortest distance between two Voronoi edges, and can be solved using simple
geometric methods. The detailed algorithm is shown in Algorithm 2.

ALGORITHM 2: Distance lower bound estimation
Data: TC: a list of tower coordinates.
Result: Dy a list of all boundary-to-boundary distance lower bounds estimated from Voronoi diagram.
TL «— TC;
P«—TL;
Build Voronoi diagram VD with P ;
for each edgel in VD do
pset1 « Voronoi points of edgel ;
for each edge2 in VD do
pset2 « Voronoi points of edge2 ;
if psetl N pset2 # (O then
‘ Dyp[(pset1, pset2)] < |edgel — edge2|;
end

end

end
return R

4.3.2  Virtual Boundaries. A fundamental limitation of using cellphone-tower communication datasets is that
records are only collected when mobile data accesses are happening. If the user is keeping silent, there is no
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way for us to know their locations. In such cases, if the user has traveled across multiple boundaries, we may
encounter the following observation: we analyze the consecutive records for this user and find out that their /;
and /; may be far away from each other and do not necessarily share a common boundary area. If /; and [; are
adjacent to each other, we say to P; ; has a real boundary. Otherwise, we refer to it as a virtual boundary.

Different from real boundaries that are treated as an edge in the Voronoi diagram, virtual boundaries are
distance estimates themselves as users have passed the coverage area of several towers during a PBE within a
virtual boundary. Since we do not have any information regarding which towers the user has visited in between,
to calculate the distance lower bound of a virtual boundary, we instead use the shortest distance of all possible
boundary pairs of /; and [; as the best estimate.

We now give an example in Fig. 6(c), where we analyze two consecutive records: r; for tower A and r; for tower
B. Since tower A and tower B do not share physical boundaries, they only have a virtual boundary between them.
To calculate their shortest distance, we calculate the distance from each boundary of tower A to each boundary
of tower B and use the shortest one of all boundary pairs as the estimated distance. In this example, the distance
between boundary (A, C) and boundary (B, N) is used as the distance lower bound of the virtual boundary (A, B).

Returning to our earlier analysis, for segments that have PBEs with virtual boundaries, we merge them with
adjacent segments if they exist. The distance estimate and lower bound of a segment are the sums of distance
estimates and distance lower bounds of both records, and if any, the virtual boundaries between them. Note
that as we calculate the sum of distance lower bounds, the resulting distance lower bound is still the minimum
distance required to reach one real boundary from the other, even this requires that the trajectory should pass
through virtual boundaries between consecutively visited towers.

4.4  Speed Estimation

Now that we have a distance estimate d,;, a distance lower bound dj;, and a range of possible travel time

represented as (Attigns, Atioose) for each segment, we can infer the travel time of a segment estimated by
A i A oose . .
Atesy = %. We denote this by At.s;. We next calculate the confidence levels for both distance

estimates and travel time estimates as follows:

dip
Cdpo = (1)
* dest
Atest
C 2
Atest Atlaose ( )

By setting a threshold for both confidence levels, we can filter out estimates that are not accurate enough.
Although we can filter out more inaccurate speed estimates with a much stricter threshold in both confidence
levels, we may end up with a limited number of records that have qualified speed estimates. Finally, after setting
a proper threshold for confidence levels, the speed of the user can be estimated as the following:

dest
AzLest

The detail of the speed estimation algorithm is shown in Algorithm 3.

®)

Sest =

4.4.1 Cell Oscillation and Speed Compensation. The distance lower bounds can also help to eliminate the cell
oscillation problem, i.e., when a user near boundary area randomly communicates with two or more towers
in short periods, generating a sequence of false pass-boundary events. Since the user keeps passing the same
boundary, the distance lower bound for such scenarios should always be 0. Therefore, the confidence level of
distance estimates will also be 0, which means that we can detect them and filter them out. The distance lower
bounds can also help when the user is near the boundary of multiple towers as the distance lower bound will
also be very low in such cases.
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ALGORITHM 3: Speed estimation
Data: R from Algorithm 1 and Dy, from Algorithm 2.
Param: Tc,, Tc,: confidence level threshold for distance estimates and travel time estimates.
Result: S: Speed estimates for each segment.
for eachr in R do
//Check if r has real boundary and find its distance lower bound
if ((lpre, D), (L Ipost)) is not in Dy, then
combine r with next record ;

continue ;
else
| dip — Dipl[(pre- D). (I Ipost )] ;
end

//Calculate travel time estimates
Att‘ight'*'Atloose

Atest - 3

//Calculate confidence level
dlb . Ates[

CdeSt - dest ’CAt”t - Atjoose °

//Estimate speed if meet threshold
if Cdesy > Tc, and Cpy,, = Tc, then

d
Sest — A5 S[r] < Sest
Atest

end
end
return S

Since segments between these false PBEs usually have very short durations due to the nature of how they are
generated, we estimate the speed for such segments based on the assumption that a user’s speed does not change
dramatically in a very short time period. Therefore, for a segment between false PBEs, if there is a segment
that happens to be very close to it and has a qualified speed estimate, we will use its speed estimate as the
speed estimate for the segment with false PBEs. Other kinds of low confident level speed estimations can also be
compensated by the nearby segments with high confidence levels as long as the confidence level and time period
are properly handled.

5 PERFORMANCE EVALUATION

In this section, we perform an evaluation of our speed estimation algorithm based on a similar but much smaller
dataset [13] collected by Intel Placelab. This small dataset contains both cell phone data and GPS traces. We use
the GPS as ground truth for the evaluation. The basic motivation for this study is that by proving our approach is
effective for the small dataset with ground truth available, it is more likely for our estimations for large datasets
to be accurate even if we cannot prove so without ground truth data for such large-scale datasets.

5.1 Dataset and Experimental Setup

The dataset we used was collected in the Seattle area in September 2004. Both cellphone data and GPS data were
collected with a Nokia 6600 cellphone and a separate GPS unit. Similar to our dataset, the cellphone data contains
only the IDs of the cell towers. Note that as the dataset was collected more than ten years ago, we can only obtain
accurate coordinations for a subset of all tower IDs contained in the dataset. We thus discarded part of the dataset
that contains tower IDs with unknown coordinates, as we cannot recover the ground truth for these towers. For

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 153. Publication date:
December 2017.



Inferring Correlation between User Mobility and App Usage in Massive Coarse-grained Data Traces « 153:13

the remaining valid data, the segments for user traces used in our evaluation contains several trips with a total
aggregate period of 40 minutes and 2,007 records.

To make the comparison fair, we used the same parameter settings as those used in our large-scale dataset
analysis. The thresholds of both the distance ratio d,4;;, and the duration ratio At,,;;, are set as 0.6. We are able
to obtain speed estimations for 1,955 records out of the 2,007 records. After the filtering procedure, we have
571 records that meet both standards. We also disable both the distance lower bound filter and the travel time
filter by setting thresholds to 0 and use the raw speed estimates as our baseline for comparison. Note that, as we
previously stated, if more information such as the underlying road networks is provided, our distance and travel
time filters can also be applied to road trajectories to obtain the most likely ones that match the visited tower
sequences instead of the straight line trajectories.

5.2 Speed Estimation Accuracy

Fig. 7(b) shows the CDF (cumulative distribution function) of errors for both the filtered speed estimates and
the raw speed estimates. Here, we define the speed estimation absolute errors as egps = |(sesr — s¢¢)| and speed
estimation relative errors as e, = [(Sess — Sg¢)|/S4¢, Where s.s; is the speed estimated by cell phone data and s,
is the ground truth speed calculated by GPS data. By using the absolute value, e, and e, are always positive
values. As the value of e, and e, can reach very high due to cell oscillations, we set upper limits of the estimated
speed, hence on e,y and e, in Fig. 7(b) to better illustrate the difference of speed estimation errors that fall into
reasonable error ranges.
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Fig. 7. The CDF of absolute errors e, and relative errors e, for raw speed estimation and filtered speed estimation

As we can see in Fig. 7, the filtered speed estimation significantly outperforms the raw speed estimation in
terms of accuracy. The highest absolute error for filtered speed estimates is only around 33 km/h while there are
about 5% of raw speed estimates have absolute errors higher than 50 km/h. There are more than 80% of filtered
speed estimates have absolute error less than 10 km/h while only less than 50% raw speed estimates have this
level of accuracy. For relative errors, about 50% of the filtered speed estimates have error rates less than 0.2, while
only 25% of raw speed estimates achieve the same level of accuracy. More than 80% of filtered speed estimates
have error rates less or equal to 0.5, while for raw speed estimates this number is only less than 50%. On the
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other end of this figure, observe that there is only less than 5% of filtered speed estimates with error rates higher
than 1, compared to more than 15% of raw speed estimates.

500

Il Raw speed estimation
[ IFiltered speed estimation

400 -

300

Number of records

100

0.1 02 03 04 05 06 07 08 09 >=1
Speed estimation errors

Fig. 8. Number of records in each error bracket for raw speed estimation and filtered speed estimation

5.3 Speed Filtering

Fig. 8 shows the number of records in each speed estimation error range, from 0.1 to 1 with an interval of 0.1.
Observe that our speed estimation algorithm works well compared to raw estimates. For example, we can observe
that approximately 50% of records that have raw speed estimation errors less than 0.5 have been filtered out,
while more than 85% of records that have raw speed estimation errors greater than 0.5 have been filtered out.

6 LARGE-SCALE DATA ANALYSIS

With our methodology on speed estimates, we next explain our findings on correlations between user mobility
and mobile data access patterns in this section. We start with the correlation of the speed and the average mobile
data access volumes. Then we reveal the relation of speed and average time intervals between consecutive mobile
data accesses. Finally, we illustrate the correlation between speed and the types of app usage that are responsible
for generating the corresponding mobile data traffic.

We implement our speed estimation algorithm and mobile data usage pattern analysis algorithm in Python.
We use the Voronoi package from Scipy [12] to construct Voronoi maps with tower coordinates and Shapely [8]
for geometry calculations. All analysis is carried out on a single Cloudlab [23] ¢8220 server with two 10-core
2.2GHz E5-2660 processors and 256GB memory.

6.1 Speed and Data Volumes

To estimate the speed, our algorithm requires a user has visited at least 3 towers consecutively. In the dataset, we
find that around 13 million records out of 58 million records can be utilized. Although the dataset contains both
user-initiated network access and background network access, we find it very hard to separate them reliably.
In our experiments, to balance the accuracy of speed estimates and the number of mobile data access records
that have qualified speed estimates, we set the threshold of both distance ratio d,,;;, and duration ratio At, 4
empirically as 0.6. After the filtering, we have around 1 million records out of total 13 million records that meet
both criteria. Fig. 9(a) shows the cumulative density function (CDF) of both raw speed estimates without filtering
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and filtered speed estimates. As we can see that the filtered speed estimates are more realistic compared to
raw speed estimates. Most of the false high-speed estimates and low-speed estimates are filtered out by setting
thresholds of confidence levels for distance estimates and travel time estimates. In the following experiments, we
only show results in the speed range from 0 km/h to 100 km/h, since there are very few records with a speed
estimate above 100 km/h for any meaningful insights.
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(a) Empirical CDF of speed estimates. (b) Correlation of speed estimates with data volumes.

Fig. 9. The empirical CDF of speed estimates and the correlation of speed estimate with data volumes.

Fig. 9(b) shows the results of the correlation of user speed and the average mobile data access volumes per
user per second. We demonstrate the data from all three cities combined and each city respectively. The figure
shows a clear trend that users are more active in accessing mobile data as the speed increases and the trend holds
true for all three cities. In fact, a user with speed estimates of 80-100 km/h could reach an average data volume of
6 times of a low-speed user. Similarly, this trend also holds true for all the cities. Note that these results only
show an increase in the mobile data access volume as user speed increases. It does not suggest lower speed users
access online contents less frequently. We believe one reason might be that a large portion of a low-speed user’s
online needs is already fulfilled by various kind of high-speed connections such as Wifi hotspots. To this end, we
reach similar findings with previous work [42] on the correlation of user mobility and mobile data access volume,
except that the previous work used the number of towers visited by a user as the indicator of user mobility.

6.2 Speed and Access Frequency

Fig. 10(a) shows the correlation of speed and average idle time intervals between consecutive mobile data access
records. Here a mobile data access record is defined as a single record entry in our dataset. The CDFs of data time
intervals for various speed ranges of all three cities are also shown in Fig. 10(b). Note that since the time precision
of our data trace is seconds, so there are steps in Fig. 10(b). The decrease in time intervals as speed increases
suggests that high-speed user accesses mobile data more frequently than low-speed users. A user with a speed
estimate of 80-100 km/h access mobile data almost twice more frequently than a user with a speed estimate of
0-20 km/h on average. The trend holds for all three cities except that there is an odd point at 80-100 km/h for one
city, which may be caused by the lacking of available data.
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We show the average volume for each data access in Fig. 10(c). As the user speed increases, there is no apparent
correlation with average volume for each data access. This suggests that increases in the average volume which
is shown in Fig. 9(b) is mainly caused by the increased data access frequency, not the volume for each data access.

6.3 Speed and App Usage

App Category # Apps Volume (GB) Example App  Remarks

Instant Messages 30 97.3 Wechat Including photos and voice records

Reading 101 17.6  iReader Book downloading & streaming

Microblog 43 13.0 Sina Weibo Various microblog apps

Navigation 38 10.8 Baidu Map Map service and navigation

Video 63 45.2  Youku

Music 33 274  QQ Music

App Market 45 37.0 App Store App downloading

Game 106 9.2 Angry Bird Content downloading, record uploading

Payment 18 1.2 Apple Pay Mobile payment apps

Comic 12 0.8 Kuaikan Comic Comic streaming

Email 10 1.5 Gmail

P2P 8 3.9 Bittorrent P2P downloading

VOIP 17 0.3 Skype internet phone calls or video chats

Multimedia Messages 2 0.3 Caixin

Browsing 558 353.5 Chrome Webpage, in-app internet access
Tweets like post, e.g. Wechat Moment

Finance 25 0.7 Flush Stock, Financial news apps

Security 22 5.2 McAfee Anti-virus apps

Others 244 95.8

Table 1. App categories

In this part, we first studied the correlation speed and app usage in the perspective of app switching and
concurrently running apps. We show this correlation in Fig. 11 that can be used as underlying support when
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answer questions such as "do users concentrate on a few apps or frequently switch between many apps under
different speed category?" For apps in different categories, we also want to provide evidence to answer questions
such as "do the users use the same type of apps when they are moving compared to when they are sitting?" So we
take a further step and show the market share changes for each app category under different speed category in
Fig. 12. Here the market share of an app category is defined as its percentage of all-category mobile data access.
With the results shown in both Fig. 11 and Fig. 12, we can have a more detailed understanding of the way users
use their smartphones under different speeds.

According to the mobile service provider, each app in our dataset was assigned to one of 18 categories, as
shown in Table 1. We show the number of apps, the example app, and a short explanation if necessary for each
category. For example, in browsing category, there are more than 500 apps. Because not only traditional browsers
are included but also various in-app web page view and tweets like short posts of some IM apps are also counted
as this category.
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Fig. 11. Correlation of user speed and the number of unique apps and app categories used

Fig. 11(a) and Fig. 11(d) show the correlation between user speed and the average number of unique apps and
app categories being used for each user during each data segment per minute. The trend clearly shows that as
the speed goes up, the app usage diversity increases rapidly. A user with a speed estimate of 80-100 km/h could
use as many as 2 times apps per unit of time compared to a low-speed user. An explanation might be that for
users with high mobility, they may use their phones more often, use more kinds of apps, and be less likely to
focus on one app for prolonged periods of time.
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In Fig. 11(b) and Fig. 11(e) we show the frequency of app switch and app category switch. They both follow
the same trend that lower speed users tend to switch apps and app categories more frequently. Combined with
Fig. 11(a) and Fig. 11(d), we can see that although low-speed users switch apps more frequently, they only switch
among a fewer number of apps.

We then further extended our study by investigating the correlation of the number of concurrently running
apps and app categories with estimated user speed. The results are shown in Fig. 11(c) and Fig. 11(f). Although
the actual launch time and closing time for each running app are unavailable, we use the network access data to
infer such information. For each app, we treat the time of the first data access as the launch time of an app. If the
app stops accessing network for a certain period (referred to as the closing threshold), we record the last network
access time as the closing time for the app. We chose 10 seconds as the closing threshold to plot Fig. 11(c) and
Fig. 11(f), but we had tested various other thresholds and found similar trends. Interestingly, in most cities, the
peak happens at the 60-80 km/h and decreases as the speed further increases.

Finally, we further investigated the trend of the contribution of various app categories on the total mobile data
access as the user speed increases. The contribution was defined as the mobile data access of one category versus
all categories. Focusing on apps that contributed the most to the total mobile data access volume, we selected the
top 8 app categories. The correlation between the user speed and the contribution of each category is shown in
Fig. 12.
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Fig. 12. Correlation of user speed and contribution of app categories.

Among the top 8 categories, the Microblog, Navigation and Music categories show a clear upward trend as
the speed increases. The impact of navigation has the most steady increase due to the increased needs for such
apps when driving. The impact almost doubles for users with speed estimates of 80-100 km/h compared to users
with speed estimates of 0-20 km/h. Instant message, Video, and App market show a downward trend as the
speed increases. The reason could be the users are cost sensitive and strictly control the data usage for large app
downloading and video streaming. Browser & Downloading and Reading show a quite stable impact that does
not change a lot as the speed increases.
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7 DISCUSSIONS AND LIMITATIONS

Despite the results based on our analysis of the large-scale dataset, we acknowledge that our study still has a
number of limitations. It is pivotal to discuss them so that our results can be interpreted in a meaningful manner.

First, our speed estimation algorithm is solely based on the coarse-grained location information from cell
phone data access traces. We have not integrated more fine-grained WiFi data for the reason that cell phone
network still has far better coverage compared to WiFi networks. Moreover, users on cell phone networks usually
have a higher degree of speed variations, whereas users using WiFi are more likely to be stationary.

On the other hand, we discuss briefly on how to integrate WiFi data to improve speed estimation, if such data
were available. We observe that the coverage patterns of WiFi access points (APs) are very different from cell
phone towers. They are usually heavily overlapped with each other. Furthermore, WiFi APs usually have smaller
coverages than cell phone towers. Therefore, if we have WiFi traces, we can estimate the locations of users more
accurately by using triangularization methods. Such locations can serve as calibration records for the estimated
trajectories. For example, when estimating the intra-cell boundary-to-boundary distances, instead of using a
straight line trajectory that passes all adjacent tower as an estimated trajectory, we can use the trajectory that
passes all recorded WiFi coverage areas in between as the better estimates. However, in this case, the distance
lower bound should also be the shortest distance between two boundaries that passes all recorded WiFi coverage
areas in between. Note that the distance lower bound might now be a straight line in this case.

A second limitation is that our dataset has limited temporal and spatial coverage. Therefore, we are not able to
perform in-depth studies on temporal or spatial trends. Further, although our dataset contains data from three
cities, they only represent patterns of densely populated areas. We believe that our speed estimation methods can
be easily applied to similar datasets from other areas. For example, in our evaluation section, we use a smaller
dataset from a whole different area to verify the performance of our speed estimation algorithm.

Finally, our speed estimation algorithm utilizes passing-boundary events as building blocks. This technique
requires that users have visited at least three nearby towers. This is because that, with tower coordinates as the
only location information, it is almost impossible to infer user locations in a specific cell phone tower coverage
area based on this tower alone. Therefore, if a user’s trace is recorded by fewer than three towers, the uncertainty
of speed estimation will undoubtedly increase.

8 CONCLUSIONS

In this paper, we studied the correlation between user mobility and app usage patterns. In particular, we focused
on users’ moving speed as the key mobility metric. A key challenge addressed by our methodology is to estimate
speeds accurately with high confidence and reliability. We verify our methodology with out of sample data.
The results show great improvement in estimation accuracy. Based on the speed estimations, we can reveal the
correlation of user mobility with mobile data usage patterns including the data volume, the data access frequency,
and the traffic share of apps on the total mobile data traffic. Results showed that with users that have high-speed
estimation tend to user smartphone more frequently and generate more traffic on the mobile data network.
Furthermore, the user speed also played an important role in the contribution of each smartphone app categories
on the total mobile data traffic.
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