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Abstract—Truth discovery is an effective tool to unearth
truthful answers in crowdsourced question answering systems.
Incentive mechanisms are necessary in such systems to stimulate
worker participation. However, most of existing incentive mech-
anisms only consider compensating workers’ resource cost, while
the cost incurred by potential privacy leakage has been rarely
incorporated. More importantly, to the best of our knowledge,
how to provide personalized payments for workers with different
privacy demands remains uninvestigated thus far. In this paper,
we propose a contract-based personalized privacy-preserving in-
centive mechanism for truth discovery in crowdsourced question
answering systems, named PINTION, which provides personal-
ized payments for workers with different privacy demands as
a compensation for privacy cost, while ensuring accurate truth
discovery. The basic idea is that each worker chooses to sign a
contract with the platform, which specifies a privacy-preserving
level (PPL) and a payment, and then submits perturbed answers
with that PPL in return for that payment. Specifically, we
respectively design a set of optimal contracts under both complete
and incomplete information models, which could maximize the
truth discovery accuracy, while satisfying the budget feasibility,
individual rationality and incentive compatibility properties.
Experiments on both synthetic and real-world datasets validate
the feasibility and effectiveness of PINTION.

Index Terms—crowdsourced question answering, truth discov-
ery, personalized privacy-preserving, incentive, contracts

I. INTRODUCTION

Crowdsourcing is becoming an increasingly popular human-

empowered problem-solving paradigm, which outsources a

specific set of tasks to a crowd of workers to complete via

an open call [1], [2]. Thus far, crowdsourcing has witnessed

extensive applications in various fields, such as environmental

monitoring, smart transportation, healthcare, and online mar-

ketplace (e.g., Amazon Mechanical Turk) [3]–[6]. Recently,

crowdsourcing, as a means of aggregating answers from par-

ticipating workers, has gained immense popularity in question

answering applications [7]–[9]. For example, workers engaged

in geotagging campaigns can answer the question on whether

there exist bumps or potholes on certain road segments [10];
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patients who are taking new drugs can answer the question on

whether there are any allergic reactions [11].

Due to the openness of crowdsourcing, answers from one

particular worker may not be reliable. Thus, most of existing

crowdsourcing studies resort to a redundancy-based strategy,

which assigns each question to a group of workers and

aggregates the answers provided by them to infer the correct

answer (called truth) of each question. Moreover, due to the

diversity of individual workers’ expertise levels, experience

levels, effort levels, or even the existence of malicious work-

ers dispersing deceptive answers, the information quality of

answers provided by different workers varies significantly.

Therefore, it is more desirable to adopt a weighted answer

aggregation mechanism which assigns higher weights to work-

ers with higher information quality than naive methods (e.g.,

majority voting) regarding all the workers equally. To tackle

the challenge that workers’ information quality is usually

unknown a priori in practice, a series of truth discovery mech-

anisms are proposed [12]–[16], which could jointly unearth the

truthful information and estimate worker quality from noisy

crowdsourced answers.

Participating in crowdsourced question answering activities

introduces various costs for workers. First, it consumes work-

ers’ time and energy to generate answers to the questions

assigned to them, and resources of their smart devices (e.g.,

power, memory) to store and upload the generated answers to

the crowdsourcing platform. These costs can be collectively

referred to as resource cost. Moreover, workers’ answers may

disclose their sensitive or private information. For example,

soliciting patients’ reactions to new drugs provides critical in-

sights for medical scientists to discover the drugs’ side effects,

but may leak sensitive information that patients are unwilling

to share. Although some privacy-preserving mechanisms (e.g.,

randomized response [17]) can be adopted, workers are still

subject to a certain degree of potential privacy leakage, leading

to privacy cost. Therefore, efficient incentive mechanisms

should be provided to compensate for workers’ various costs

in order to stimulate adequate worker participation.



Thus far, a wide spectrum of incentive mechanisms [3],

[18]–[21] have been developed for crowdsourcing systems.

However, most of them only consider compensating workers’

resource cost, while the cost incurred by potential privacy

leakage has been rarely incorporated. Recent works [22]–[26]

have taken the first step towards privacy-preserving incentive

mechanisms for crowdsourcing. Specifically, [22] employed

a cryptography-based scheme to protect workers’ privacy in

their incentive mechanism design. The work in [23] and [24]

respectively focused on preserving workers’ bid privacy and

location privacy based on differential privacy. However, in

these works, the emphasis is put on the privacy preservation

mechanism itself, while workers’ privacy cost is not explicitly

measured and compensated. In [25], [26], the authors first

considered compensating workers’ privacy cost in their incen-

tive mechanisms. However, they assume that the platform is

trusted, which may not hold in practice as the platform will

probably be hacked and become untrusted. More importantly,

different workers may raise different degrees of awareness

even under the same degree of potential privacy leakage, that

is, they bear different privacy preferences [27]. A worker with

a higher privacy preference would usually expect a larger

compensation than one with a lower privacy preference even

when they are provided with the same privacy-preserving level

(PPL). However, to the best of our knowledge, none of existing

privacy-preserving incentive mechanisms in crowdsourcing

has ever studied how to provide personalized payments for

workers involved in question answering tasks with their dif-

ferent privacy preferences taken into consideration.

To address these issues, in this paper, we propose PIN-

TION1, a contract-based personalized privacy-preserving in-

centive mechanism for truth discovery in crowdsourced binary-

choice question answering systems, which provides personal-

ized payments for workers with different privacy preferences

as a compensation for privacy cost, while achieving accurate

truth discovery. The basic idea is that each worker chooses to

sign a personalized contract with the platform, which specifies

a PPL and a payment, and then submits perturbed answers

with that PPL in return for that payment. The design objective

of PINTION is to derive a set of optimal contracts, which

maximizes the truth discovery accuracy, under both complete

information model, where the platform knows each worker’s

precise privacy preference, and incomplete information model,

where only the distribution of workers’ privacy preferences is

known by the platform. Meanwhile, the set of designed con-

tracts can satisfy the budget feasibility (BF) property ensuring

that the total cost of the platform does not exceed the budget

available, the individual rationality (IR) property ensuring that

each worker’s privacy cost is properly compensated, and the

incentive compatibility (IC) property ensuring that workers

would truthfully reveal their privacy preferences.

In summary, this paper makes the following contributions:

• To the best of our knowledge, this is the first work to de-

1The name PINTION comes from Personalized prIvacy-preserving
iNcentive for Truth dIscovery in crowdsourced questiOn aNswering.

sign a personalized privacy-preserving incentive mechanism

for truth discovery in crowdsourced binary-choice question

answering systems, which could provide personalized pay-

ments for workers with different privacy preferences, while

achieving accurate truth discovery.

• We quantify each worker’s PPL and privacy cost based on

the idea of randomized response, and formally define the

truth discovery accuracy in terms of γ-accuracy.

• We respectively design a set of optimal contracts under

both complete and incomplete information models, which

maximizes the truth discovery accuracy, while guaranteeing

the BF, IR, and IC properties.

• We conduct extensive experiments of PINTION on both syn-

thetic and real-world datasets, and the results demonstrate

its feasibility and effectiveness.

II. RELATED WORK

Empowered by human wisdom, crowdsourcing is gaining

increasing popularity in question answering applications by

soliciting answers from a crowd of participating workers [28],

[29]. Considering the heterogeneity in the information quality

of answers provided by different workers, a series of truth

discovery algorithms [12], [14], [16], [30], [31] have been

proposed to jointly find the true answers and infer worker

quality from noisy crowdsourced answers. However, a key

component missing in these works is an efficient incentive

mechanism, which is of crucial importance for stimulating

adequate worker participation.

Aware of the importance of incentivizing worker partici-

pation, researchers have developed a wide spectrum of in-

centive mechanisms for crowdsourcing [3], [18]–[20], [32],

[33]. However, these incentive mechanisms only take workers’

resource cost into consideration, while the cost incurred by

potential privacy leakage (i.e., privacy cost) is not considered.

One line of previous work, which is highly related to this pa-

per, incorporates workers’ privacy concerns into their incentive

mechanism designs [22]–[26], [34]. Specifically, cryptography

techniques are employed in [22] to preserve workers’ privacy.

The work in [23] and [24] leverages differential privacy to

protect workers’ bid privacy and location privacy, respectively.

However, these works put emphasis on the privacy preserva-

tion mechanism itself, while the privacy cost of workers is not

explicitly measured and compensated. In [25], [26], workers’

privacy cost is first integrated into the incentive mechanism

design. However, the platform is assumed to be trusted in [25],

[26], and data perturbation is performed on the aggregated

results at the platform to resist privacy threats from adversaries

outside the crowdsourcing system. In contrast, we do not

make such an assumption in our incentive mechanism, and

workers perturb their answers locally before uploading them to

the platform. Moreover, workers’ different privacy preferences

are considered in our incentive mechanism. Although the

researchers in [34] propose an incentive mechanism with

workers’ heterogeneous privacy demands taken into account,

they focus on a simple averaging task of continuous values,

where all workers are treated equally. In our work, however,



workers’ diverse information quality is captured in finding the

true answers to binary-choice questions.

III. PRELIMINARIES

In this section, we first provide an overview of our crowd-

sourced binary-choice question answering system, and then

briefly introduce truth discovery and randomized response.

A. System Overview

The crowdsourced binary-choice question answering system

considered in this paper consists of two parties: a platform

and a set of W participating workers, denoted by W =
{1, 2, . . . ,W}. The platform (i.e., the crowdsourcer) is inter-

ested in a set of questions Q = {1, 2, . . . , Q}. Each question

q ∈ Q has two possible answers. Formally, we use xtruth
q ∈

{+1,−1} to denote the true answer for question q. Due to

the openness of crowdsourcing, answers from one particular

worker may be unreliable. Therefore, in order to obtain the

true answer to each question q ∈ Q, the platform aggregates

the answers from a group of workers. Specifically, if we denote

the answer to question q from worker w by xw
q , then we have

x∗
q = A

({
xw
q

}W
w=1

)
, where x∗

q is the aggregated result for

question q, and A (·) denotes the aggregation algorithm2.

B. Truth Discovery

A fundamental issue in crowdsourced question answering

is how to aggregate answers from multiple workers to find

the correct answer for each question. A simple method is to

conduct majority voting. Since there are only two possible

answers (i.e., +1 or −1) for each question in our binary-choice

question answering system, the majority voting method can be

equivalently formulated as

x∗
q = sign

(∑
w∈W xw

q

)
, (1)

where xw
q is the answer for question q from worker w, and x∗

q

is the corresponding aggregated result. The function sign (z)
equals to +1 if z ≥ 0, and −1 otherwise. This simple

aggregation strategy, which treats all the workers equally, may

fail to provide reliable aggregated results, as the information

quality of worker-provided answers usually varies significantly

among different workers in crowdsourcing.

Recently, truth discovery has emerged as an effective tool in

question answering problems, as it can infer workers’ informa-

tion quality from noisy crowdsourced answers in the form of

weights, and incorporates such weights to conduct weighted

aggregation to find the correct answers. We summarize the

general procedure of truth discovery in Algorithm 1.

Answer Aggregation: This step conducts weighted answer

aggregation for each question based on the currently estimated

worker weights. Formally,

x∗
q = sign

(∑
w∈W λwx

w
q

)
, (2)

2Note that for ease of presentation, we assume herein that each worker
w ∈ W provides an answer for each question q ∈ Q.

Algorithm 1: Truth Discovery in Crowdsourced

Binary-Choice Question Answering

Input: Answers from W workers for Q questions{
xw
q

}Q,W

q,w=1

Output: Aggregated answers for Q questions
{
x∗
q

}Q
q=1

1 Initialize workers’ weights {λw}Ww=1;

2 while convergence criterion is not satisfied do
3 for q ∈ Q do
4 Update the aggregated answer x∗

q using

currently estimated weights based on Eq. (2);
5 end
6 for w ∈ W do
7 Update the worker weight λw using currently

aggregated answers based on Eq. (3);
8 end
9 end

where λw is the weight of worker w. Obviously, this weighted

aggregation process follows the principle that the aggregated

result relies more on the answer provided by workers with

higher information quality.

Weight Estimation: In this step, workers’ weights are cal-

culated based on the current aggregated answers. Specifically,

the weight λw of each worker w ∈ W is calculated as

λw = g(pw) = g

(∑
q∈Q I

(
x∗
q , x

w
q

)
Q

)
, (3)

where I (·) is the indicator function (I (x1, x2) = 1 if x1 = x2,

and 0 otherwise), and pw is the probability that worker w
provides correct answers. g (·) is a monotonically increasing

function. Different truth discovery algorithms may adopt var-

ious forms of g (·), but the underlying principle that a worker

who is more likely to provide correct answers will be assigned

a higher weight remains the same.

C. Randomized Response

Workers usually have privacy concerns when they partici-

pate in question answering activities, as the submitted answers

may disclose their sensitive information. As the platform in

our crowdsourced question answering system is assumed to be

untrusted, traditional definition of differential privacy, which

provides workers with privacy protection against information

leakage through published aggregated results, is no longer

applicable [7]. Thus, we adopt the following local differential

privacy definition in this paper.

Definition 1: (ε-Local Differential Privacy): A randomized

algorithm M is said to satisfy ε-local differential privacy if

for any two different values x1 and x2 in D, and any S ⊆ D,

Pr {M (x1) ∈ S} ≤ eε × Pr {M (x2) ∈ S} , (4)

where ε is the privacy budget, indicating the level of privacy

protection, and we refer to it as the PPL in this paper.

Recently, a set of local differential privacy (LDP) solutions

has been proposed. Among them, randomized response [17],
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Fig. 1. Framework of PINTION (where circled numbers represent the
sequence of the events).

[35], a surveying technique for collecting statistics on sensi-

tive topics, has attracted significant attention. In randomized

response, each worker will flip a coin before answering a

question. If the coin comes up heads, she provides her original

answer; otherwise, she provides the opposite of her original

answer. Using this procedure, workers obtains plausible deni-

ability for any answers they provide, thus they are provided

with a certain level of privacy protection.

IV. SYSTEM FRAMEWORK

We present the framework of PINTION in Fig. 1, and

describe the workflow as follows.

1) The platform designs a set of optimal contracts (each

contract is a PPL-payment bundle), which maximizes the

truth discovery accuracy, while satisfying the BF, IR, and

IC properties (step 1©).

2) The platform publishes the set of designed contracts along

with the set of questions Q to the set of participating

workers W (step 2©).

3) Each worker w ∈ W makes her own decision to sign

one contract with the platform to maximize her utility.

Then, due to privacy concerns, worker w perturbs her

original answers
{
xw
q

}Q
q=1

for each question q ∈ Q with a

probability determined by the PPL specified in the signed

contract, yielding perturbed answers
{
x̂w
q

}Q
q=1

(step 3©).

4) After collecting the perturbed answers
{
x̂w
q

}Q,W

q,w=1
from all

workers, the platform pays each worker according to the

payment specified in the signed contract (step 4©).

5) The platform conducts truth discovery on the perturbed

answers
{
x̂w
q

}Q,W

q,w=1
to obtain aggregated results

{
x̂∗
q

}Q
q=1

for each question q ∈ Q (step 5©).

V. THEORETICAL ANALYSIS: PRIVACY VERSUS

ACCURACY

In this section, we first quantify workers’ PPLs and privacy

cost, and then formally define the truth discovery accuracy.

A. Workers’ Privacy Analysis

As previously mentioned, workers will perturb their original

answers before uploading them to the platform to preserve

privacy. Inspired by the idea of randomized response, we adopt

the following perturbation mechanism.

Definition 2: (Perturbation Mechanism): Given a binary

answer x (i.e., x ∈ {+1,−1}) and a probability pr, the answer

perturbation mechanism M satisfies that M(x) = x with

probability pr, and M(x) = −x with probability 1− pr.
If worker w chooses a probability prw to perturb her original

answers using this perturbation mechanism, that is, she pro-

vides her perturbed answer x̂w
q for question q (i.e., x̂w

q = xw
q

with probability prw, x̂w
q = −xw

q with probability 1 − prw),

she will be provided with a certain PPL. It is worth noting

that when two probabilities pr
′

w , pr
′′

w satisfy pr
′

w + pr
′′

w = 1,

they can provide worker w with the same level of plausible

deniability, which promises the same PPL. Thus, without loss

of generality, we assume prw ≥ 0.5. Intuitively, moreover,

when prw = 0.5, worker w acquires the largest level of

deniability, indicating the largest possible PPL. We present

the explicit relationship between prw and the acquired PPL in

the following theorem.
Theorem 1: When worker w adopts the perturbation mech-

anism in Definition 2 to perturb her original answers with

probability prw, that is, she provides her original answers

(resp. opposite of original answers) with probability prw (resp.

1− prw), she achieves εw-local differential privacy guarantee,

and εw = ln
(

pr
w

1−pr
w

)
is referred to as her obtained PPL.

Proof 1: We omit the proof here because it is similar to the

proof of Theorem 6.2 in [7].
According to Theorem 1, if worker w chooses to sign a

contract with the platform which specifies a PPL εw, she

would perturb her original answers using the perturbation

mechanism in Definition 2 with the probability prw = eεw

eεw+1 .

Obviously, if a contract specifying a higher PPL (i.e., a smaller

εw) is signed between the platform and worker w, she would

perturb her original answers with a probability prw closer to

0.5, that is, she provides answers with larger deniability. Note

that since all the workers w ∈ W adopt the same perturbation

mechanism, Theorem 1 is applicable to all of them.
After quantifying a worker’s PPL in Theorem 1, we now

derive her privacy cost. Naturally, a worker’s privacy cost is

related to her obtained PPL, and a lower PPL (i.e., a higher

degree of potential privacy leakage) leads to larger privacy

cost. In other words, the privacy cost of worker w, denoted by

Cw (εw), is positively correlated with the privacy parameter

εw. Moreover, Cw (εw) is also related to her privacy pref-

erence, which indicates how sensitive about privacy leakage

she is. Without loss of generality, in this paper, we adopt the

linear privacy cost function in [36], i.e., Cw (εw) = cwεw,

where cw is the cost of unit privacy leakage for worker w,

which is referred to as her personalized privacy preference.

Then, with a contract signed with the platform, a worker’s

utility is defined as follows.
Definition 3: (Worker Utility): The utility of worker w,

denoted by uw, is calculated as

uw = rw − cwεw, (5)

where the bundle (εw, rw) is the contract signed between

worker w and the platform, which specifies the payment rw
to her if she submits perturbed answers with the PPL εw.



B. Truth Discovery Accuracy Analysis

As described in Algorithm 1, before adding perturbation,

the aggregated answers for each question q ∈ Q are obtained

through weighted aggregation on original answers, i.e., x∗
q =

sign
(∑

w∈W λwx
w
q

)
, where λw is the estimated weight for

worker w. According to Eq. (3), λw = g(pw), where pw is

the probability that worker w provides correct answers (i.e.,

Pr
{
xw
q = xtruth

q

}
), and g (·) is a monotonically increasing

function. Without loss of generality, in this paper, we adopt a

simple weight calculation function λw = 2pw − 1.

Before presenting the truth discovery accuracy analysis

after answer perturbation, let’s consider a simple scenario

of two workers. Worker a provides correct answers with

probability pa, where pa ∈ [0, 0.5], and worker b provides

correct answers with probability pb, where pb = 1 − pa.

If worker b flips all her answers to the opposite ones, she

would also have the probability pa to provide correct an-

swers. Therefore, we have xb
q = −xa

q . Using the above-

mentioned weight calculation function, the weight of worker

b is λb = 2pb − 1 = 2 (1− pa)− 1 = 1− 2pa = −λa. When

the platform conducts weighted aggregation for question q on

the answers from worker a and worker b, the contribution

from worker b is λbx
b
q = (−λa)

(−xa
q

)
= λax

a
q , which

is exactly the contribution from worker a. Note that this

observation, which indicates that worker b is equivalent to

worker a in the weighted answer aggregation, will be used in

our subsequent analysis of the truth discovery accuracy from

perturbed answers.

When worker w perturbs her answers using the perturbation

mechanism in Definition 2 with the probability prw, that is, she

provides her original answers (resp. opposite of original an-

swers) with probability prw (resp. 1−prw), then the probability

that she provides correct answers is calculated as

p̂w = pwp
r
w + (1− pw) (1− prw) . (6)

Now, the aggregated answers for each question q ∈ Q are

obtained through weighted aggregation on perturbed answers,

i.e., x̂∗
q = sign

(∑
w∈W λ̂wx̂

w
q

)
, where λ̂w is the estimated

weight for worker w after perturbation, and λ̂w = 2p̂w − 1.

In order to measure the truth discovery accuracy based on

perturbed answers, we introduce an accuracy metric, which is

formally defined as follows.

Definition 4: (γ-Accuracy): For each aggregated answer x̂∗
q

for question q ∈ Q based on workers’ submitted perturbed

answers, given γ ∈ (0, 1), it satisfies γ-accuracy if and only

if Pr
{
x̂∗
q �= xtruth

q

} ≤ γ.

According to Definition 4, γ-accuracy ensures that the ag-

gregated answer from workers’ perturbed answers for question

q ∈ Q equals to the correct answer with high probability.

Obviously, a smaller γ implies a stronger accuracy guarantee.

In Theorem 2, we prove that the aggregated answer for

question q ∈ Q based on workers’ submitted perturbed

answers using the truth discovery algorithm in Algorithm 1

satisfies γ-accuracy.

Theorem 2: For each question q ∈ Q, using the truth

discovery procedure in Algorithm 1, the error probability of

the aggregated answer based on workers’ submitted perturbed

answers, i.e., Pr
{
x̂∗
q �= xtruth

q

}
, satisfies that

Pr
{
x̂∗
q �= xtruth

q

} ≤ exp

(
−
∑

w∈W (2p̂w − 1)
2

2

)
. (7)

Proof 2: Since worker w provides correct answers with

probability p̂w after perturbation, and λ̂w = 2p̂w − 1, if

we denote the weighted answer from worker w for ques-

tion q by x̃w
q , then x̃w

q = λ̂wx
truth
q with probability p̂w,

and x̃w
q = −λ̂wx

truth
q with probability 1 − p̂w. Then, the

weighted sum of all workers’ answers is x̃∗
q =

∑
w∈W x̃w

q ,

and we have E
[
x̃∗
q

]
= E

[∑
w∈W x̃w

q

]
=
∑

w∈W E
[
x̃w
q

]
=∑

w∈W xtruth
q λ̂w (2p̂w − 1).

The error probability of the aggregated answer after

perturbation can be calculated as Pr
{
x̂∗
q �= xtruth

q

}
=

Pr
{
x̃∗
q < 0

∣∣xtruth
q = 1

}
Pr
{
xtruth
q = 1

}
+

Pr
{
x̃∗
q ≥ 0

∣∣xtruth
q = −1

}
Pr
{
xtruth
q = −1

}
. According to

the Chernoff-Hoeffding bound, we have

Pr
{
x̃∗
q < 0

∣∣xtruth
q = 1

}
= Pr

{
E
[
x̃∗
q

]− x̃∗
q > E

[
x̃∗
q

] ∣∣xtruth
q = 1

}
≤ exp

(
− 2(E[x̃∗

q |xtruth
q =1 ])

2

∑
w∈W (2λ̂w)

2

)
= exp

(
− (

∑
w∈W λ̂w(2p̂w−1))

2

2
∑

w∈W λ̂2
w

)
.

(8)

With λ̂w = 2p̂w − 1 and based on the Cauchy-Schwarz

inequality, we have(∑
w∈W λ̂w (2p̂w − 1)

)2
=
(∑

w∈W λ̂2
w

)(∑
w∈W (2p̂w − 1)

2
)
. (9)

Thus, we have

Pr
{
x̃∗
q < 0

∣∣xtruth
q = 1

} ≤ exp
(
−

∑
w∈W (2p̂w−1)2

2

)
.

(10)

In a similar way, we can also get

Pr
{
x̃∗
q ≥ 0

∣∣xtruth
q = −1

} ≤ exp
(
−

∑
w∈W (2p̂w−1)2

2

)
.

(11)

In summary, we have Pr
{
x̂∗
q �= xtruth

q

} ≤
exp

(
−

∑
w∈W (2p̂w−1)2

2

)
, which completes the proof.

According to Theorem 2, in order to provide a good guaran-

tee for the truth discovery accuracy after perturbation, we need

to minimize exp
(
−

∑
w∈W (2p̂w−1)2

2

)
, which is equivalent to

maximizing
∑

w∈W (2p̂w − 1)
2
.

VI. CONTRACT-BASED INCENTIVE MECHANISM DESIGN

In this section, we present our contract-based incentive

mechanism design.

A. Design Objective

Without loss of generality, we assume that workers can

be divided into K privacy groups according to their privacy

preferences, and the privacy preference of workers in the i-th
(1 ≤ i ≤ K) privacy group is ci. The privacy preferences of

K privacy groups can be sorted as c1 < c2 < · · · < cK .

The design objective of our incentive mechanism is to derive

a set of optimal contracts {(ε1, r1) , (ε2, r2) , . . . , (εK , rK)}



for K privacy groups, which could maximize the truth discov-

ery accuracy (i.e., maximizing
∑

w∈W (2p̂w − 1)
2
). Substitut-

ing Eq. (6) into
∑

w∈W (2p̂w − 1)
2
, the design objective be-

comes maximizing
∑

w∈W (4pwp
r
w − 2pw − 2prw + 1)

2
. As in

most prior work on truth discovery [16], [37], we assume that

most workers have fairly high information quality (i.e., pw is

close to 1), and a small portion of workers have relatively low

quality (i.e., pw is close to 0), and we have demonstrated that

workers with pw = 0 are equivalent to workers with pw = 1,

thus we could resort to maximizing
∑

w∈W (2prw − 1)
2

as

an approximation. Moreover, as prw = eεw

eεw+1 according to

Theorem 1, we finally turn to maximizing
∑

w∈W
(

eεw−1
eεw+1

)2
.

Meanwhile, the set of designed contracts should satisfy the

following three constraints.

The first constraint that needs to be satisfied is budget

feasibility defined in Definition 5.

Definition 5: (Budget Feasibility (BF)): A set of contracts

is budget feasible, if and only if the total payment for all

participating workers does not exceed the budget B, i.e.,∑
w∈W rw ≤ B. (12)

In order to prevent workers from being disincentivized to

participate, it is necessary to satisfy individual rationality,

defined in Definition 6.

Definition 6: (Individual Rationality (IR)): A set of con-

tracts satisfy IR if they provide workers in any privacy groups

with non-negative utility, i.e.,

ri − ciεi ≥ 0, (1 ≤ i ≤ K) . (13)

Moreover, the set of contracts should satisfy incentive com-

patibility, defined in Definition 7, which ensures that selfish

and strategic workers cannot improve their utility by cheating

their privacy groups.

Definition 7: (Incentive Compatibility (IC)): A set of con-

tracts satisfy IC if they ensure that the workers in the i-th
privacy group achieve the maximum utility when they sign

the (εi, ri) contract rather than other contracts (εj , rj), i.e.,

ri − ciεi ≥ rj − ciεj , (1 ≤ i , j ≤ K, j �= i) . (14)

In the next two subsections, we present the optimal contract

design under the following two information models.

1) Complete Information Model: Under this model, the

platform knows each worker’s privacy group (i.e., privacy

preference) in advance. Thus, the platform can specially

design and offer one contract for each group. This is an

ideal case which usually cannot be achieved in practice,

and we employ it as a benchmark.

2) Incomplete Information Model: Under this model, in-

stead of each worker’s privacy group, the platform only

knows the distribution of workers in different privacy

groups, say the number of workers in each group.

B. Contract Design under Complete Information Model

This section investigates the optimal contract design under

complete information model. Under this model, workers in

group i (i = 1, ...,K) could only receive one contract (εi, ri)
from the platform. In this case, the IC property is satisfied

naturally, and the platform only needs to consider the BF and

IR properties in the contract design.

Assume there are mi workers distributed in group i, thus

the optimal contract design under complete information model

can be formulated as

max
∑K

i=1
mi

(
eεi − 1

eεi + 1

)2

(15a)

s.t.
∑K

i=1
miri ≤ B, (15b)

ri − ciεi ≥ 0, for 1 ≤ i ≤ K, (15c)

where B is a fixed budget available to the platform, and ci
is the privacy preference of workers in the i-th privacy group.

Since the objective function (15a) is an increasing function

of εi, the inequality constraints (15b)(15c) can be equivalently

simplified to equality constraints, i.e.,
∑K

i=1 miri = B and

ri − ciεi = 0 (1 ≤ i ≤ K). Due to the difficulty in find-

ing the analytical solution to the optimization problem (15),

we transform it into an unconstrained optimization problem

using a penalty function, and solve it numerically based on

gradient ascent. After obtaining the set of optimal PPLs ε∗i
(i = 1, ...,K), the set of optimal payments r∗i are calculated

as r∗i = ciε
∗
i . We would like to stress that the problem of

finding the global optimum is beyond the scope of this paper.

C. Contract Design under Incomplete Information Model
A more realistic and complicated scenario is the incomplete

information model, where the platform only knows the distri-

bution of workers in different privacy groups (i.e., the number

of workers mi in each group i). Note that this can be achieved

by making a survey questionnaire [38].

Without the knowledge of the privacy preferences of work-

ers, the platform needs to offer the set of contracts designed

for different privacy groups to each worker. In this case,

selfish and strategic workers may pretend to be in other

privacy groups to sign contracts not designed for her group

to obtain undeserved utility. Thus, in addition to the BF and

IR properties, the set of designed contracts should also satisfy

the IC property. Therefore, the optimal contract design under

incomplete information model is formulated as

max
∑K

i=1
mi

(
eεi − 1

eεi + 1

)2

(16a)

s.t.
∑K

i=1
miri ≤ B, (16b)

ri − ciεi ≥ 0, for 1 ≤ i ≤ K, (16c)

ri − ciεi ≥ rj − ciεj , for 1 ≤ i, j ≤ K, i �= j.
(16d)

As shown in Eqs. (16c)(16d), there are K IR constraints

and K× (K−1) IC constraints, making it intractable to solve

this problem directly. Therefore, we simplify it.

We first simplify the BF and IR constraints as in Lemma 1.

Lemma 1: The BF constraint Eq. (16b) and IR constraints

Eq. (16c) can be equivalently simplified to
∑K

i=1 miri = B
and rK − cKεK = 0.



Proof 3: Recall that c1 < c2 < · · · < cK and based on the

IC constraints Eq. (16d), for ∀i < K, we have ri−ciεi ≥ rK−
ciεK > rK − cKεK . Thus, in order to satisfy the IR property

for all workers, we only need to ensure that rK − cKεK ≥
0. Furthermore, it is obvious that the platform could always

choose a larger εK to achieve higher truth discovery accuracy

without violating the IR constraints until rK − cKεK = 0.

Also, if
∑K

i=1 miri < B, the platform could choose a larger

rK , which corresponds to a larger εK until
∑K

i=1 miri = B.

Next, we simplify the IC constraints Eq. (16d). To this end,

we first provide the following lemma.

Lemma 2 (PPL Monotonicity): Workers in groups with

higher privacy preferences (or higher privacy groups in short)

prefer a higher PPL. Specifically, for any two feasible contracts

(εi, ri) and (εj , rj), εj ≤ εi if ci ≤ cj .

Proof 4: Based on Eq. (16d), for i �= j, we have ri−ciεi ≥
rj−ciεj and rj−cjεj ≥ ri−cjεi. Adding the two inequalities,

we have (εj − εi)(ci − cj) ≥ 0, indicating εj ≤ εi if ci ≤ cj .

Then, the IC constraints Eq. (16d) can be simplified as in

Lemma 3 below.

Lemma 3: The IC constraints Eq. (16d) can be simplified

to ri − ciεi = ri+1 − ciεi+1, 1 ≤ i ≤ K − 1.

Proof 5: We prove Lemma 3 in three steps. First, we prove

that if ri − ciεi ≥ ri+1 − ciεi+1, then ri − ciεi ≥ ri+1 −
ciεi+1 ≥ ... ≥ rK − ciεK holds.

Assume ci ≤ ci+1 ≤ ci+2, based on the IC property

and Lemma 2, we have ri+1 − ci+1εi+1 ≥ ri+2 − ci+1εi+2

⇒ ri+1 − ri+2 ≥ ci+1 (εi+1 − εi+2) ⇒ ri+1 − ri+2 ≥
ci (εi+1 − εi+2) ⇒ ri+1 − ciεi+1 ≥ ri+2 − ciεi+2. We also

have ri−ciεi ≥ ri+1−ciεi+1. Thus, ri−ciεi ≥ ri+2−ciεi+2.

In this way, we can derive that ri − ciεi ≥ ri+1 − ciεi+1 ≥
... ≥ rK − ciεK .

Following a similar methodology, we can prove that if ri−
ciεi ≥ ri−1 − ciεi−1, then ri − ciεi ≥ ri−1 − ciεi−1 ≥ ... ≥
r1 − ciε1 holds.

Second, we prove that ri − ciεi ≥ ri+1 − ciεi+1 is active

in the optimal contract, i.e., ri − ciεi = ri+1 − ciεi+1. This

is because the platform could always choose a larger εi in

the optimal contract design to achieve higher truth discovery

accuracy until the equality holds.

Third, we prove that if ri − ciεi = ri+1 − ciεi+1, then

ri − ciεi ≥ ri−1 − ciεi−1 holds naturally.

Based on Lemma 2, we have ri − ciεi = ri+1 − ciεi+1 ⇒
ri − ri+1 = ci (εi − εi+1) ⇒ ri − ri+1 ≤ ci+1 (εi − εi+1) ⇒
ri+1 − ci+1εi+1 ≥ ri − ci+1εi.

In summary, ri−ciεi = ri+1−ciεi+1 implies that ri−ciεi ≥
rj − ciεj , ∀i �= j, which completes the proof.

With Lemma 1, Lemma 3, the optimization problem

Eq. (16) can be equivalently simplified to

max
∑K

i=1
mi

(
eεi − 1

eεi + 1

)2

(17a)

s.t.
∑K

i=1
miri = B, (17b)

rK − cKεK = 0, (17c)

ri − ciεi = ri+1 − ciεi+1, 1 ≤ i ≤ K − 1. (17d)

The optimization problem (17) can be further simplified as

in the following theorem.

Theorem 3: The optimization problem (17) is equivalent to

max
∑K

i=1
mi

(
eεi − 1

eεi + 1

)2

(18a)

s.t.
∑K

i=1
Qiεi = B, (18b)

where

Qi =

{
m1c1, i = 1

mici +Δci
∑i−1

j=1 mj , i ≥ 2
(19)

Δci = ci − ci−1. (20)

Proof 6: According to Eq. (17d), we have

rK−1 − cK−1εK−1 = rK − cK−1εK . (21)

Substituting rK = cKεK (i.e., Eq. (17c)) into it, we have

rK−1 = cK−1εK−1 + (cK − cK−1) εK
= cK−1εK−1 +ΔcKεK ,

(22)

where ΔcK = cK − cK−1.

Following the same methodology, we can represent ri (1 ≤
i ≤ K) as follows

ri =

{
ciεi +

∑K
j=i+1 Δcjεj , i ≤ K − 1

cKεK , i = K
(23)

Substituting Eq. (23) into Eq. (17b), we have∑K
i=1 miri =

∑K−1
i=1

(
miciεi +mi

∑K
j=i+1 Δcjεj

)
+mKcKεK ,

(24)

which can be summarized as∑K

i=1
miri =

∑K

i=1
Qiεi = B, (25)

where Qi is defined as in Eq. (19).

Therefore, the set of optimal PPLs ε∗i (i = 1, ...,K) can be

obtained by solving the optimization problem (18), and the set

of optimal payments r∗i are calculated according to Eq. (23).

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PINTION.

A. Baselines

In PINTION, we customize contracts for workers with

different privacy preferences in order to provide them with

personalized PPLs and payments. As elaborated in Section II,

none of existing work has considered the same scenario as this

paper, thus they are not comparable with PINTION. Instead,

we choose a simple single-contract strategy as the baseline,

where the platform designs and offers one and the same

contract to all the participating workers regardless of their

different privacy preferences. In particular, we consider the

following two options in the single-contract design.

1) Single Contract with Individual Rationality (SC-IR):
This single contract ensures that workers in the highest

privacy group (i.e., with highest privacy preference) achieve

zero utility, and thus workers in lower groups achieve
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positive utility. That is, the IR property is satisfied for all

the workers.

2) Single Contract with Take-it-or-Leave (SC-Take-it-or-
Leave): This single contract guarantees that workers in

the median privacy group achieve zero utility. Thus, only

workers in lower groups will sign the contract and provide

answers, while those in higher groups will leave as their

received utility will be negative.

Furthermore, under PINTION, we compare the truth dis-

covery mechanism with the simple majority voting scheme.

B. Experiments on Synthetic Dataset

In this part, we provide experimental results on synthetic

dataset. We assume that the platform needs to find the correct

answers to Q = 1000 binary-choice questions, by aggre-

gating the answers from W = 100 workers. The correct

answer xtruth
q for each question q is randomly selected from

{+1,−1}. Each worker randomly selects a subset of questions

Q′
from Q to answer, and we denote s =

∣∣∣Q′
∣∣∣/|Q| as

the worker participation level. To generate workers’ original

answers xw
q , we assume that W1 workers have a relatively high

information quality, while the rest W − W1 workers have a

relatively low information quality. The probability of providing

correct answers pw for workers of high quality is assumed to

be sampled from a uniform distribution U (a, 1), while that for

workers with low quality is simply sampled from the uniform

distribution U (0, 0.3). After a worker signs a contract with

the platform, she perturbs her original answers following the

perturbation mechanism in Definition 2 with a probability

prw determined by the PPL specified in the signed contract,

and gets the corresponding payment. Then, truth discovery is

conducted on the perturbed answers x̂w
q from all participating

workers. We assume that W workers are uniformly at random

distributed in K = 10 privacy groups. The privacy preference

of each privacy group is sampled from a uniform distribution

of U (15, 40), and we sort them in ascending order. Note that

s, W1, a, and the budget B are respectively set to 0.02, 80,

0.7, and 1000 unless otherwise specified.

1) Contract Feasibility: We first evaluate the feasibility of

the contracts designed in PINTION.

PPL Monotonicity: We first present the PPL εi in the set of

contracts designed for K privacy groups. As shown in Fig. 2,

under both complete and incomplete information models,

contracts designed for higher privacy groups offer higher

PPLs (i.e., smaller εi), indicating that workers with higher

privacy preferences pursue higher PPLs. This is consistent with
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Lemma 2. In addition, workers in the same group are provided

with higher PPLs under incomplete information model. The

underlying reason is that the platform does not know workers’

privacy preferences, and thus it would waste some budget to

provide workers with positive utility to encourage them to

truthfully reveal their privacy groups.

IR Property: The utility of workers in different privacy

groups is shown in Fig. 3. Obviously, workers in arbitrary

groups achieve non-negative utility under both information

models, which validates the IR property. Specifically, all

workers achieve zero utility with complete information, as

the platform knows each worker’s privacy group and designs

personalized contracts with zero utility for workers. In con-

trast, under incomplete information model, only workers in

the highest group achieve zero utility, while contracts for other

groups offer workers positive utility, as they are designed with

extra utility to incentivize workers to behave truthfully.

IC Property: With incomplete information, we demonstrate

the utility of workers in group 3, 5, 7 when signing K different

contracts in Fig. 4. As indicated by the arrows, workers achieve

the maximum utility when they sign the contract customized

for them. Moreover, workers in lower groups achieve higher

utility than those in higher groups when signing the same

contract. This can be explained by the definition of worker

utility in Eq. (5) and the fact that the privacy preference of

lower groups is smaller.

2) System Performance: Next, we investigate the impact

of different system parameters on the truth discovery ac-

curacy. We employ error rate on all the Q questions (i.e.,
∑

q∈Q Γ(x̂∗
q ,x

truth
q )

Q , where Γ (x1, x2) = 1 if x1 �= x2, and 0
otherwise) as the accuracy metric.

Impact of Budget: The impact of the platform’s budget

B on error rate is shown in Fig. 5, where B ranges from

1000 to 2000. Note that hereafter we use “C” and “I” to

respectively represent complete and incomplete information

model, and we use “TD” and “MV” to respectively represent

the truth discovery and majority voting scheme. As depicted in

Fig. 5, whichever the mechanism, lower error rate is achieved

as B rises. This result is self-explanatory. When the platform

has more budget to afford, it can provide more payment to

incentivize workers to choose a lower PPL, leading to lower

error rate. Besides, truth discovery achieves lower error rate

than majority voting under both complete and incomplete

information models, which demonstrates the importance of in-

corporating workers’ diverse quality into answer aggregation.
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Finally, we can see that our personalized contract design in

PINTION is superior to the single-contract strategies.

Impact of Worker Participation Level: We investigate

the impact of worker participation level s (s varies from

0.01 to 0.06) on the truth discovery accuracy in Fig. 6.

Unsurprisingly, when each worker provides answers for more

questions (i.e., higher worker participation level), the platform

achieves lower error rate. This is because with higher worker

participation level, we can aggregate answers from more

workers for each question, and thus gain stronger robustness to

unreliable answers from some low-quality workers. Moreover,

as illustrated in Fig. 6, truth discovery outperforms majority

voting in answer aggregation, and the personalized contract

design in PINTION achieves higher aggregation accuracy than

the single-contract baselines.

Impact of Worker Quality Level: Intuitively, truth dis-

covery accuracy is inherently correlated with workers’ answer

quality before perturbation, which is reflected by the proba-

bility of providing correct answers pw. We simulate different

pw via changing the value of the parameter a of the uniform

distribution U (a, 1), from which pw of high-quality workers

are sampled. Clearly, larger value of a indicates higher overall

worker quality. The performance comparison when a ranges

from 0.6 to 0.85 is shown in Fig. 7, from which we can

see that a higher worker quality before perturbation, leads

to better accuracy in final answer aggregation. As for the

comparison between truth discovery and majority voting, and

the comparison between PINTION and the single-contract

mechanism, consistent results are observed from Fig. 7.

C. Experiments on Real-world Dataset

To further validate the effectiveness of PINTION, we con-

duct experiments on the following two real-world datasets.

1) Sentiment Analysis For Tweets [39]: This dataset contains

5000 labels (answers) from 83 Amazon Mechanical Turk

workers for 1000 tweets (questions) with hand-labeled

sentiment (i.e., true answers). In order to estimate worker

quality more accurately, we only include workers who pro-

vide answers to more than 5 questions in the experiment.

2) Duck Dataset [40]: This dataset contains binary judgments

about whether a duck appears in a picture. We utilize a

subset of it, which includes judgments (answers) from 39
MTurk annotators (workers) for 108 images (questions).

The above-mentioned datasets are workers’ original an-

swers. Similar to synthetic experiments, workers will perturb

their original answers according to the contracts they signed
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with the platform, and truth discovery is conducted on the

perturbed answers. Since the number of workers here is not

that large, we assume that they are uniformly distributed in

K = 8 privacy groups, and the privacy preference of each

group is also sampled from U (15, 40).
We now investigate the impact of budget on the truth

discovery accuracy using these two datasets. Consistent results

are observed from Fig. 8 with Fig. 9. Specifically, truth

discovery outperforms majority voting under both complete

and incomplete information models. Moreover, the platform

achieves higher aggregation accuracy under complete informa-

tion model, as the contracts are designed to exactly provide all

workers with zero utility, and thus the budget is fully utilized

to incentivize workers to choose lower PPLs, promising lower

error rate. Finally, the results can demonstrate the superiority

of our personalized contract design in PINTION compared to

the single-contract baselines.

VIII. CONCLUSIONS

This paper presented PINTION, a personalized privacy-

preserving incentive mechanism for truth discovery in crowd-

sourced question answering systems based on contract the-

ory, which provides personalized payments for workers with

different privacy preferences as a compensation for privacy

cost, while ensuring accurate truth discovery. The basic idea

of PINTION is that each worker will sign a contract with

the platform, which specifies a personalized PPL and the

corresponding payment, and then submits perturbed answers

according to that PPL in return for that payment. Specifically,

a set of optimal contracts are respectively designed under

both complete and incomplete information models, which

maximizes the truth discovery accuracy, while satisfying some

desirable properties, including budget feasibility, individual

rationality, and incentive compatibility. We conduct extensive

experiments on both synthetic and real-world datasets to

validate the feasibility and effectiveness of PINTION.
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