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Abstract—Effective and efficient animal disease detection and
control have drawn increasing attention in smart farming in
recent years. It is crucial to explore how to harvest data
and enable data-driven decision making for rapid diagnosis
and early treatment of infectious diseases among herds. This
paper proposes an IoT-based animal social behavior sensing
framework to model mastitis propagation and infer mastitis
infection risks among dairy cows. To monitor cow social be-
haviors, we deploy portable GPS devices on cows to track their
movement trajectories and contacts with each other. Based on
those collected location data, we build directed and weighted
cattle social behavior graphs by treating cows as vertices and
their contacts as edges, assigning contact frequencies between
cows as edge weights, and determining edge directions according
to contact spatial-temporal information. Then, we propose a
flexible probabilistic disease transmission model, which considers
both direct contacts with infected cows and indirect contacts via
environmental contamination, to estimate and forecast mastitis
infection probabilities. Our model can answer two common
questions in animal disease detection and control: 1) which
cows should be given the highest priorities for an investigation
to determine whether there are already infected cows on the
farm; 2) how to rank cows for further screening when only a
tiny number of sick cows have been identified. Both theoretical
and simulation-based analytics of in-the-field experiments (17
cows and more than 70-hours data) demonstrate the proposed
framework’s effectiveness. In addition, somatic cell count (SCC)
mastitis tests validate our predictions as correct in real-world
scenarios.

Index Terms—IoT, social cattle behavior sensing, propagation
modeling, agriculture 4.0 and smart farming

I. INTRODUCTION

PRODUCTION of high quality milk is the most important
task of modern dairy operations [1]. However, critical

biosecurity challenges, such as transmissible diseases, not
only affect the health of cows and sustainability of dairy
farms, but also the quality of end products [2]. One type
of disease that has drawn considerable attention in recent
years is mastitis [3], which affects all areas of the dairy
industry: from animal health, to lost milk production and lower
product quality. In fact, it has been considered one of the most
significant diseases of dairy herds, and has huge effects on
farm economics. Cows can contact mastitis-causing bacteria
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through either environment or other cows, and no simple
solutions are available for its control to date.

In this paper, we develop an IoT-based integrated solution to
address this problem, where we aim to achieve cost-effective
mastitis transmission control using a decentralized platform
with novel sensing and interference algorithms to identify
the most vulnerable cows for further screening. As such a
screening process is labor-intensive and costly, our goal is
to maximize the likelihood of successful identification while
minimizing false positives. Our core contributions involve the
development of a complete methodology for sensing cows’
social behavior, inferring the social interaction graphs of
cows, modeling disease transmission based on such social
graphs, and inferring the most likely candidates for detailed
screening. Such a methodology allows us to identify how
the potential disease may have transmitted on a farm in a
posterior manner. As output, our methodology performs a
forecast and recommends a short list of cows for manual
screening using additional validation methods, based on which
we either conclude the population is free from the disease, or
a set of most likely propagation paths and infected cows.

Background: Mastitis is a disease commonly found on
dairy farms that is caused by microorganisms, usually bacteria,
that invades the udder and multiplying in the milk-producing
tissues, producing toxins that result in inflammation. The
immune system of cows will respond and fight the infection
with an increase in the number of immunocytes, referred to
as somatic cells. The number of somatic cells in milk, i.e.,
somatic cell count (SCC), is an indication of inflammation [4],
[5]. An elevation of SCC above 200,000 cell/ml is generally
considered abnormal and indicates inflammation in the udder.
Mastitis will lead to reduced milk production and lower milk
quality. Good-quality milk not only lasts longer, tastes better,
but is also more nutritious. On the other hand, milk with a
high SCC is arguably associated with indirect health risks to
the consumer. The National Mastitis Council (NMC) estimates
that mastitis costs dairy producers in the United States over
$2 billion annually.

Based on its severity, mastitis can be classified into subclin-
ical and clinical forms. Subclinical mastitis is challenging to
detect due to the absence of any visible indications, while it
can still lead to abnormally high SCC in milk and can be up
to 40 times more common than clinical cases of the illness.
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Subclinical mastitis has major cost implications. Studies found
that 70 to 80% of mastitis losses were due to subclinical
mastitis. On the other hand, commonly used approaches to
measure the SCC count are both costly and time-consuming
procedures to test the produced milk, hence, not scalable to
large herd size and farm-scale practices. Currently, although
subclinical mastitis is the predominant form in most herds and
is the most costly to a producer, most producers know neither
the prevalence rate in their herd nor which cows are infected,
and therefore, do not attempt to treat the infected cows.

Approach: Our key research challenge to be answered is
that with the help of IoT instrumentation, whether it is possible
for us to detect subclinical mastitis by testing just a few cows
that are most vulnerable to disease transmission, so that we can
infer the health status of the entire farm. This way, preventive
measures can be taken early. However, existing sensing and
monitoring approaches, such as those based on cameras or
manual calibration methods [6], [7], are either too costly to
deploy on a large scale, or do not provide the needed accuracy
to generate a short list of candidates for further testing. In
this paper, we propose an integrated sensing, modeling, and
inference framework. Specifically, we deploy sensors on cows
to track their behavioral models, based on which we infer
their contact history. Based on this history, we infer the most
likely disease transmission paths if the candidate cows are
indeed identified as positive for disease monitoring. On the
other hand, if the whole farm is actually healthy and free of
diseases, our methods will validate this with the least amount
of effort and testing overhead.

To our best knowledge, the proposed framework is the
first IoT based instrumentation platform that will help us
understand the social behavior of cows on farm environments.
Our results demonstrate the success of the overall approach
with validations and results. Our major contributions of this
approach are listed as follows:

First, to our knowledge, we are the first to propose the use
of social behavior networks of cows for disease tracking appli-
cations, where we passively reconstruct such social behavior
history for our application. This demonstrates a new potential
area of social networks among animals in semi-controlled
environments. This study also paves the way for us to uncover
the disease transmission paths in later studies.

Second, we design and evaluate novel inference algorithms
to reconstruct the history of social interactions purely based
on passive data. Our algorithms take both direct and indirect
contact caused infection into account, and can be adapted to
support different types of configurable combinations, such as
the number of assumed sick cows, the disease transmission
probability, and the distance thresholds to determine contact.

Third, we demonstrate the correctness and effectiveness of
our results through extensive experimental results, including
not only simulations, but also in-the-field deployments. Our
study also supports the results with a real-world case study
that accurately detected one cow with SCC testing results.
This demonstrates the correctness of the inference models for
the disease transmissions and their analysis results.

The remaining of this paper is organized as follows. Section
II and III describes the related work and an overview of system

design. Section IV and V present the implementation and the
evaluation results respectively. Section VI concludes the paper.

II. RELATED WORK

In this section, we summarize the state-of-the-art practices
in smart farming deployments.

Smart Farming Deployments: Smart farming refers to the
deployment of information and communication technologies
to modern agriculture practices. Recent technologies and tech-
niques are rapidly taken advantage of using satellite imagery
[8], [9], agricultural robots [10], [11], large deployments of
sensor nodes [12], [13], and unmanned aerial vehicles or
drones for aerial imagery and actuation [14]–[17]. IoT based
smart farming solutions are applied in a wide variety of
domains, such as precision agriculture, greenhouse control,
and livestock monitoring [18].

Precision agriculture technologies aim to enhance agricul-
tural productivity by providing smart automation, improving
and optimizing agricultural production environments and plan-
ning. Different IoT sensors are developed for the applica-
tions, including climate condition monitoring [19], soil pattern
analysis [20], disease monitoring [21], plant and harvest time
optimization [22], among others.

Mastitis Detection in Dairy Cows: IoT based livestock
monitoring solutions aim to improve dairy products and live-
stock conditions by attaching different monitoring sensors to
the animals to obtain their performance. Due to the increasing
demand for early identification of disease symptoms, IoT
sensing devices have been deployed to monitor the animal
temperature [23], heart rate [18], and physical gestures [24]
to prevent animals suffering from any disease. However, our
work is different in that we are the first to use location data
to build passive social network graphs of cows for disease
tracking and preventing.

One important step of the overall procedure of our method-
ology is to manually screen cows once most likely candidates
have been identified. In practice, this labor-intensive step is
done by measuring the SCC counts of milk produced. On
January 1, 2012, the U.S. dairy industry began transitioning to
a producer-level milk sampling program for SCC compliance
with EU regulations for products exported to the EU. The
impact of this regulation will be profound because this change
will hold individual farms accountable to stricter quality
criteria.

Commonly used methods of mastitis detection include SCC
estimation, electrical conductivity (EC), and identification of
the causative microorganisms [25]. Methods have been devel-
oped for SCC estimation, such as direct microscopic somatic
cell counting, California mastitis test (CMT), Portacheck,
Fossomatic SCC, or DeLaval cell counter, among others [26].
The gold standard to determine SCC is to count the somatic
cells with methylene blue staining. This is time consuming
and technically demanding. Alternatively, many farms measure
individual cow SCC on a monthly basis by the Dairy Herd
Improvement Association (DHIA) which can be costly and
offers limited effectiveness. About 60 to 70% of environmental
pathogen infections exist for less than 30 days and are not
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easy to be detected, so some cases could go unnoticed with
monthly tests. For the inline test, the only commonly used
method is to test the EC content of milk [27], [28]. It is known
that mastitic milk has a higher EC than normal milk. Most
automatic milking units today are equipped with EC sensors
that flag cows with clinical mastitis but cannot effectively
identify cows with subclinical mastitis. However, it is fair to
say that the existing methods are rather limited in terms of
speed, sensitivity, frequency, and/or expense [29]. Therefore,
it will be extremely useful if continuous farm-wide monitoring
is conducted to provide clues as to whether the mastitis is of
the contagious or environmental type.

Comparison with Similar Approaches: There have been
limited deployments efforts in using IoT technologies to
forecast herd farm diseases. In [30], the authors developed
a platform for similar purpose of detecting mastitis using
IoT integration. In their approach, data from a range of
measurement devices, cattle collars, milking station and feed
wagon are integrated into a cloud infrastructure. At the milking
robot, they used sensors to measure the conductivity of the
milk as a change in conductivity arises from an increase in
milk Na+ concentration as a consequence of infection. To
improve detection, they also collected accelerometer derived
data from the Afimilk Silent Herdsman collar to provide an
early indication of the onset of mastitis which informs an early
intervention action. The combination of the two measurements
provides corroboration between two radically different sensor
modalities and provides an improvement in the measurement
reliability and accuracy. This approach is very different from
ours in the types of sensors used and in the data aggregation
algorithm. Further, they still need to manually test each cow
for disease detection without developing any real capabilities
for forecasting, as they do not collect any interaction history
nor cow trajectories.

In another effort of using IoT to improve cows’ health [31],
the authors discover that in almost all cases they observed,
mastitis manifests itself in a very sharp decrease in rumi-
nation as measured using sensors. By measuring this metric
alone, in eight out of eleven mastitis cases, the alarm was
generated before the mastitis was diagnosed. However, the
paper is different from ours considerably as they do not
provide complete details on the false alarm rate, and whether
their experience can be validated on farms with different
management protocols.

III. SYSTEM DESIGN

The proposed system consists of four components, i.e.,
cow social behavior tracking, social graph building, disease
propagation modeling, and screening list recommendation, as
shown in Figure 1.

A. Cow Social Behavior Tracking

We leverage portable battery-powered GPS devices to mon-
itor cows’ trajectories and track their social behaviors. Specif-
ically, two GPS devices with the same signal scanning fre-
quency are assigned to each cow to track its movement. Even
if when one of the two devices failed to work, cow trajectories

can still be collected by the other. Suppose ∆t data points
are lost in a GPS trajectory ~g = 〈gt−1, gt, gt+∆t+1, gt+∆t+2〉,
where gt = (lont, latt) is the GPS location collected at time t,
and 〈gt+1, . . . , gt+∆t〉 are missing. Assuming that the missing
∆t points are evenly distributed between gt and gt+∆t+1 (i.e.,
cows walk along a straight line at a constant velocity), we
estimate the missing point gt+i as follows:

gt+i = ( lont+∆t+1−lont
∆t+1 ∗ i+ lont,

latt+∆t+1−latt
∆t+1 ∗ i+ latt) (1)

where i ∈ {1, 2, . . . ,∆t}. Besides location gt, modern GPS
tracking devices, e.g., GPS SiRF star III chipsets [32] used
in our studies, usually return an estimated horizontal position
error (EHPE) et associated with gt. Accordingly, we use the
averaged et+et+∆t+1

2 to approximate et+i.
Next, it is necessary to detect and weed location outliers

because external factors, such as occlusions and GPS signal
instability, might introduce noisy data into cow trajectories. We
rely on both EHPEs and cow walking speeds to clean data. As
a built-in location error estimation reported by GPS devices,
an EHPE measures the inaccuracy of an individual collected
location. We design an EHPE threshold θe to filter out those
GPS data points with a high EHPE. For more details of the
θe setting and EHPE distributions in our study, see Section V.

Besides EHPEs, we leverage cow walking speeds to identify
noisy locations. For location gt collected at time t, we estimate
cow walking speeds for its following n time steps (i.e., from
time t+1 to t+n). If gt is an outlier, its distance to normal data
points is more likely to be large, leading to a high walking
speed. Considering noisy data may exist at the following n
time steps, we remove the largest speed to reduce such effects.
Then we calculate the averaged speed for the rest n− 1 time
steps:

v̄ =

∑n
i=1

d(gt+i,gt)
t+i−t −max1≤i≤n

d(gt+i,gt)
t+i−t

n− 1
(2)

where d(gt+i, gt) represents the Euclidean distance between
GPS locations gt+i and gt. If v̄ is higher than a speed threshold
θv , location gt is regarded as a noise data point. Otherwise,
gt is a normal data point. The setting of θv can be found in
Section V.

Finally, we perform data fusion. After fixing missing data
and removing noise, we merge the two GPS trajectories gen-
erated by the same cow into one. Since the two GPS locations
at the same time may have different EHPEs, it is reasonable
to assign a larger weight to the location with a lower EHPE.
Suppose we have two GPS locations g1

t = (lon1
t , lat

1
t ) and

g2
t = (lon2

t , lat
2
t ) collected at time t with EHPEs of e1

t and
e2
t respectively. To ensure the location with a lower EHPE is

assigned a higher weight in data fusion, we express the merged
weighted average latitude and longitude coordinate (lont, latt)
is expressed as:

gt = (lont, latt) = (
lon1

t e
2
t + lon2

t e
1
t

e1
t + e2

t

,
lat1t e

2
t + lat2t e

1
t

e1
t + e2

t

) (3)

Note that if either of g1
t and g2

t is missing, we take the
existing one to represent the merged data.
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Fig. 1. Framework overview. We deploy two GPS devices on each cow to track its movement. The two collected trajectories will be merged after fixing
missing data (represented by unfilled location markers) and removing noise data. Then we build cow social behavior networking graphs by treating cows as
vertices, and direct (solid line) and indirect (dashed line) contacts as edges. Base on social behavior graphs, a probabilistic disease transmission model is
proposed to estimate disease propagation in cow herds. Finally, we rank all cows’ infection probabilities and suggest a list of cows for screening in order of
decreasing priority.

B. Social Network Modeling
To model cow social behaviors, we build a weighted di-

rected graph G = (V, E, W (E)) by treating cows as vertices,
contacts between cows as edges, and contact frequencies as
edge weights. In graph G, V = {vi|i = 1, 2, · · · , N} is a
set of vertices where N is the total number of cows; E ⊆
{(vi, vj)|(vi, vj) ∈ V 2∧ vi 6= vj} is a set of directed (from vi
to vj) edges; W (E) = {wvi,vj |(vi, vj) ∈ E ∧ wvi,vj ∈ R+}
is a set of edge weights. Instead of building one graph G for
each time step, we build one graph G by aggregating all cow
contacts within a long time period T to reduce computing
overhead. For example, our GPS devices collect one location
point every second, but we build one graph G per minute
rather than per second.

Suppose we have two preprocessed GPS trajectories ~ga =

〈ga1 , ga2 , · · · , gaT 〉 and ~gb = 〈gb1, gb2, · · · , gbT 〉 for cow A and
cow B respectively, where gat and gbt are latitude and longitude
coordinates at time t, and T is the length of total time steps
to build G. We propose the following models to identify both
direct and indirect contacts between cow A and cow B to
establish edges.

Direct Contact Model: It is intuitive to determine a contact
between cow A and cow B if the Euclidean distance between
gat and gbt is below a distance θd, i.e., d(gat , g

b
t ) < θd. Although

the above method is straightforward and efficient, it may suffer
from insufficient robustness due to the instability of GPS
signals and EHPEs. Therefore, we propose a sliding-window
contact model, which incorporates all point-to-point distances
within a time sliding-window of 2τ + 1 rather than a single
distance calculated at time t. Note that the sliding-window
contact model only considers the d(gat , g

b
t ) when we set τ as

0. Specifically, we calculate the average point-to-point distance
from the time t− τ to the time t+ τ :

d̄ =

∑t+τ
i=t−τ d(gai , g

b
i )

2τ + 1
(4)

If the average distance d̄ is below θd, cow A and cow B
interacts with each other at time t. Let va and vb represent
the vertices of cow A and B in G. Then edge (va, vb) and
(vb, va) are added into G. If cow contacts are observed for n
times among the T time steps, we set wva,vb and wvb,va as n.

Indirect Contact Model: Direct contact requires two cows
to stay physically near enough at the same time step. However,
cow living environments also play a key role in the transmis-
sion of infectious diseases. For example, a sick cow A stays

in one place and contaminates its surrounding environment.
Later, cow B, who comes and stays close to the contaminated
place for a long time, might be infected through the envi-
ronment. We define such contacts as indirect contacts in this
paper.

One of the challenges involved in recognizing indirect
contacts is to localize where cows stay without moving. GPS
devices used in our study switch automatically into hibernation
mode if the cow stops moving longer than a certain consecu-
tive time period, and re-enter data collecting mode when the
cow starts to move again. When processing the GPS data, we
set latitude and longitude coordinates during the hibernation
mode as (0, 0). For a GPS trajectory ~g = 〈g1, g2, ..., gn〉, we
use a time period δ threshold to identify consecutive inactivity.
If more than or equal to δ consecutive (0, 0) are found, a
staying will be determined. Then we use the most recent
k GPS data points prior to inactivity to infer exact staying
locations. For example, we regard the latest non-hibernation
data point as the staying location when k is set as 1. When
k is larger than 1, instead an average location is used. For
each staying, we also record its start time ts and end time te.
The details of how to infer staying locations are illustrated in
Algorithm 1.

Algorithm 1 Infer Staying Location
1: procedure STAYLOCATION(~g, δ, k)
2: ~s← [ ] . a list of pairs of staying location and time
3: c← 0 . initialize the number of consecutive (0, 0)
4: for i = 1→ |~g| do . |~g| is the length of trajectory
5: if gi = (0, 0) then
6: c← c+ 1 . find a (0, 0) location
7: else
8: if c >= δ then . find a staying location
9: ts ← i− c . the start time of staying

10: te ← i− 1 . the end time of staying

11: ḡ ←
∑i−c−1
t=i−c−k gt

k . the staying location
12: append (ḡ, (ts, te)) to ~s
13: c← 0 . re-count consecutive (0, 0)

14: return ~s . staying locations and associated time

Using Algorithm 1, we obtain staying locations and as-
sociated time information ~sa and ~sb for cow A and cow
B respectively. Next, we present how to identify indirect
interactions and how to add corresponding weighted directed
edges in cow social graph G based on ~sa and ~sa. Similar to the
direct contact model, we use vertices va and vb to represent
cow A and cow B in G. Then we propose a threshold θc
to determine whether staying locations of two cows are close
enough for disease transmission. A directed edge (va, vb) with
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a weight of wva,vb will be added to the social graph G when
the staying location distance between cow A and cow B are
below θc and cow A comes first. The wva,vb is estimated by
cow A’s staying duration tae−tas and the time interval between
the departure of cow A and the arrival of cow B, i.e., tbs− tae .
We also introduce an environment-based disease transmission
probability decay rate ρ to estimate the weight as:

wva,vb = (tae − tas)e−ρ(t
b
s−t

a
e ) (5)

where tas (tbs) and tae (tbe) are the start and end staying
time of cow A (cow B). The definition of wva,vb keeps
consistent with the two following facts: (i) a longer staying
of cow A leads to a higher infection probability for cow B,
and (ii) the environment-based infectivity decreases over time.
More details of identifying indirect contacts are illustrated in
Algorithm 2.

Algorithm 2 Identify Indirect Contact
1: procedure INDIRECTCONTACT( ~sa, ~sb, G, θc, ρ)
2: for each sa in ~sa do
3: for each sb in ~sb do
4: (ga, (tas , t

a
e ))← sa . staying info. for cow A

5: (gb, (tbs, t
b
e))← sb . staying info. for cow B

6: if d(ga, gb) < θc then . indirect contact exists
7: if tae <= tbs then . cow B follows cow A

8: wva,vb ← (tae − t
a
s )e−ρ(t

b
s−t

a
e )

9: add edge (va, vb) with wva,vb to G
10: else . cow A follows cow B
11: wvb,va ← (tbe − t

b
s)e
−ρ(tas−t

b
e)

12: add edge (vb, va) with wvb,va to G

13: return G . return updated social behavioral graph

C. Disease Propagation Model

As mentioned before, we build one graph for a long time
period, such as one minute. Based on a list of cow social
behavior graphs ~G, we propose a disease transmission model
to explore how diseases propagate among cows over time.
Suppose we have two cows vi and vj and there exists an
edge (vi, vj) with a weight wvi,vj in Gt, which is the graph
built during time period t. We set the disease transmission
probability for each unit contact (i.e., wvi,vj = 1) as r. The
infection probability of cow vi at time t is denoted as ptvi . At
time period t+ 1, we update pt+1

vj as:

pt+1
vj = ptvj + (1− ptvj ) ∗ p

t
vi ∗ wvi,vj ∗ r (6)

where ptvj is the infection probability of cow vj at time pe-
riod t, and second term is the infection probability contributed
by the edge (vi, vj) at time period t+1. We assume a subset of
cows V ′ ⊆ V are sick at the beginning (i.e., t = 0) and update
infection probability of each cow as shown in Algorithm 3.

D. Screening List Recommendation

It is laborious to screen all cows to check whether they
are infected with mastitis. Instead, we rank cows according
to their expected infection probabilities and recommend cows
most likely to be infected. For each cow vi, we assume it
is infected at the beginning (i.e., V ′ = {vi}) and use the
proposed propagation model in Algorithm 3 to calculate the
corresponding final infection probabilities PV

′
= {PV ′vj |vj ∈

Algorithm 3 Propagation Model
1: procedure DISEASETRANSMISSION(~G, V, V ′, r)
2: for each vi in V do . all cows
3: if vi ∈ V ′ then . sick cows
4: p0

vi
← 1 . initialize prob. of sick cows as 1

5: else . healthy cows
6: p0

vi
← 0 . initialize prob. of healthy cows as 0

7: for t = 0→ |~G| − 1 do . update prob. over time
8: for each (vi, vj) in Gt do
9: pt+1

vj
= ptvj

+ (1− ptvj ) ∗ ptvi ∗ wvi,vj ∗ r

PV
′

= {p|~G|vi
|vi ∈ V }

10: return PV
′

. infection prob. of all cows at time T

V } where PV
′

vj is the infection probability of cow vj given cow
vi is sick. Then we calculate the average infection probability
p̄vi of cow vi with the assumption that each cow is sick at the
beginning. Finally, we rank p̄ = {p̄vi |vi ∈ V } in descending
order and suggest cows for further screening. Algorithm 4
shows more details of generating the recommended cow list.

Algorithm 4 Generate Screening List
1: procedure GENERATESCREENLIST(~G, V, r)
2: for each vi in V do . calculate prob. if cow vi is sick
3: V ′ = {vi} . cow vi is sick at time t = 0

4: PV
′
← DiseaseTransmission(~G, V, V ′, r)

5: for each vi in V do . iterate each cow
6: sum = 0
7: for each vj in V do . iterate each sick cow
8: V ′ = {vj} . cow vj is sick at time t = 0

9: sum = sum+ PV
′

vi
. add corresponding prob.

10: p̄vi = sum
|V | . average final probability of cow vi

11: sort p̄ = {p̄vi |vi ∈ V } by value descending
12: return p̄ . infection prob. at time T for all cows

IV. IMPLEMENTATION

In this section, we present the system implementation in-
cluding GPS hardware deployment and software development.

A. GPS Device Deployment

We use portable GPS tracking devices equipped with a
65nm SiRF III GPS chipset to collect cow trajectories. Two
types of GPS devices – i-gotU GT-600 and iTrail Logger
H6000 – are deployed because of a series of advantages like
small sizes (1.8′′ x 1.6′′ x 0.5′′), light weights (1.3oz) and a
long battery life (>100 hours). In addition, the two devices are
water-resistant and get into hibernation after several minutes of
inactivity, making them more practical on dairy farms. When
deploying GPS devices on cows, we first power on a device
and put it into a pouch, which could prevent accidental button
pushes and improve water resistance. Then, we attach the
pouch to cow collars. Both the two GPS devices have built-
in storage memory, where the collected data is automatically
saved. The data was processed in an offline manner. We
detached GPS devices from cows and exported the GPS data
into local computers for further analysis.

1) Data Visualization and Preprocessing: We develop a
cow trajectory visualization system, cow social behavior graph
visualization tools, and a disease transmission modeling simu-
lator. It is essential to develop a flexible GPS data visualization
system to understand cow moving behaviors. We implement
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such a visualization system through Google Maps JavaScript
APIs. Our system is capable of plotting any given latitude
and longitude coordinates, drawing cow trajectories of specific
time periods and cow identifiers.

2) Disease Transmission Modeling Simulator: Besides the
theoretical analysis of disease transmissions in Algorithm 3,
we implement a disease propagation simulator to validate the
correctness of our theoretical propagation model. Instead of
assigning an infection probability to each cow, we monitor
the infection status (it can be either infected or uninfected)
of cows. When launching the simulator, we label the sick
cow status as infected and the rest as healthy. Then, we
updated cow statuses step by step based on their contacting
information. For an edge (vi, vj) in cow social graph G, we
generate a random number x ∈ [0, 1]. If x is smaller than
the transmission probability r and cow vi has been infected,
the status of cow vj will be set as infected. Otherwise, the
status of cow vj keeps unchanged. For each initialized setting,
e.g., assumed sick cows and infection probabilities, we run the
simulator for a large number of rounds. Then we calculate the
average infection probabilities of each cow using the number
of infected status over the total number of running iterations.

V. EVALUATION

In this section, we first present the experimental setup and
the collected dataset. Next, we give all parameter settings
used in data preprocessing, social behavior graph building, and
disease propagation modeling. We also compare the proposed
disease propagation theoretical model with simulators to prove
its correctness. Furthermore, we show how to suggest cows for
further screening in two common mastitis detection scenarios.
Finally, one real-world SCC based case study is conducted to
demonstrate the effectiveness of our framework.

A. Experimental Setup and Dataset

We conducted in-the-field experiments in a span of fourteen
days on a university-owned dairy farm. With the help of farm
staff, two GPS devices, which could be either i-gotU GT-
600and or iTrail Logger H6000, were deployed on the collar
of each cow (see Figure 2). In our experiments, 17 cows from
6 different pens were involved. We combined pen IDs and cow
IDs to identify unique cows in our study. For example, pen4 1
is the first cow from the fourth pen. The scanning frequency
of all GPS devices was set as 1, i.e., collecting one data point
per second. In total, we collected more than 70-hours cow
movement data.

B. Parameter Settings

When preprocessing raw GPS data, we set the missing
data threshold θm as 5. It means that if one GPS device
lost more than 5 consecutive data points, we treat these
data are true positive lost data. Otherwise, we recover the
false positive missing data based on Equation 1. The average
false positive missing data percentage of all GPS devices is
0.72%, with a standard deviation of 1.47%. The aggregated
EHPE distributions of the two types of GPS devices used
in our experiments are illustrated in Figure 3. More than
98.56% collected location data have an EHPE within 3 meters,

(a) Dairy cattle shed (b) GPS devices deployed on collar

Fig. 2. GPS device deployment on a university-hosted dairy cattle farm.
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(b) iTrail Logger H6000

Fig. 3. EHPE distributions of i-gotU GT-600 and iTrail Logger H6000 GPS
devices. More than 98.56% collected location data have an EHPE within 3
meters, and 99.68% within 5 meters.

and 99.68% within 5 meters. So we set the EHPE filtering
threshold θe as 3 meters, removing those locations with an
EHPE higher than 3 meters because of the high uncertainty.
In addition, we set n = 10 and θv = 5 m/s in Equation 2
to remove noisy data by speed. After data cleaning, we find
the mean conflict percentage between the dual devices on the
same cow is 12.54%, with a standard deviation of 11.51%.

When building cow social behavior graph G, we aggregated
and identified direct and indirect contacts within one minute.
In direct contact model, we set the time sliding-window size
as 3, i.e., τ = 1 in Equation 4. We illustrated the impacts
of different direct contact distance thresholds θd in our case
studies. In the indirect contact model, the consecutive inactive
time period threshold δ is set as 60 seconds and the number
of most recent points prior to inactivity k in Algorithm 1
is set as 15, because we found these settings achieved the
highest accuracy when inferring the pen of cows based on
cow inactive behaviors. We set the indirect contact distance
threshold θc = 1 and environment-based disease transmission
probability decay rate ρ = 0.01 in Algorithm 2 by default.

C. Theoretical Analysis VS Simulated Analysis

It is time-consuming to simulate the disease propagation
using the entire collected real-world dataset. Our dataset
contained 17 cows and more than 3900 time steps in minute,
which requires a huge number of random numbers to be
generated for each round of simulation. In addition, thousands
of rounds of simulations have to be run to ensure accurate final
infection probabilities. Therefore, we randomly pick up 30-
minutes collect data to compare the theoretical and simulated
results with different disease propagation settings. Specifically,
each cow or any arbitrary two cows are assumed as sick
before launching the simulation. We calculate the root-mean-
square error (RMSE) between simulated and theoretical in-
fection probabilities of other cows with different transmission



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3122341, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX XXXX 7

probabilities, i.e., r = 0.0001 or r = 0.0002, after certain
simulation rounds. As shown in Figure 4, the RMSE between
simulated and theoretical results decreases with the increase
of simulation rounds. When the number of simulation rounds
achieves 10000, the RMSE is less than 0.001, indicating the
correctness of our proposed theoretical propagation model.

10 100 1000 10000
Simulation rounds

0.000

0.005

0.010

0.015

0.020

0.025

RM
SE

# sick cow = 1, r = 0.0001
# sick cow = 1, r = 0.0002
# sick cow = 2, r = 0.0001
# sick cow = 2, r = 0.0002

Fig. 4. RMSE between simulated and theoretical results with different number
of assumed infected cows and transmission probabilities. We set θd = 5,
θc = 1, ρ = 0.01, and disease transmission probability r = 0.0001.

D. Recommend Cows for Further Screening in Two Scenarios

The proposed framework is flexible to offer suggestions on
which animals should be screened with a high priority in the
following two scenarios: 1) sick cows are unknown, but we
want to determine whether there exist infected cows on the
farm; 2) sick cows are known, and we want to figure out which
cows are more likely to be infected. We use pen x→pen y to
represent mastitis is transmitted from cow pen x to cow pen y.

Scenario 1: Sick Cows Are Unknown. Without knowing
which cows are infected, it is reasonable to assume that each
cow is sick with the same likelihood. Following Algorithm 4,
we generate a screening list by ranking cows based on their
averaged infection probabilities when each cow is assumed as
sick at the beginning. The effects of both distance thresholds
θd and transmission probabilities r on averaged probabilities
are demonstrated in Figure 5a and Figure 5b, where the legend
of All→pen x represents the disease is transmitted from each
cow to cow pen x. The cow pen7 1 and cow pen4 1 are the
most and least likely to be infected cows in the two figures.
Therefore, cow pen7 1 will be assigned the highest screening
priority to check whether exist infected cows on the farm. It
is interesting to note that cows from the same pen (see cow
pen11 1, pen11 2, pen11 3, and pen11 4 in Figure 5a and
Figure 5b) illustrate similar infection probabilities.

Scenario 2: Sick Cows Are Known. When some cows
have already been diagnosed with mastitis, we apply the
propagation model in Algorithm 3 to figure out more infected
cows. By treating each diagnosed cow as sick at the beginning,
we calculate the theoretical infection probabilities of other
cows. We used different distance thresholds θd to build contact
graphs and different transmission probabilities r to estimate
the propagation speed between cows.

Figure 6a and Figure 6b illustrate the infection probabilities
of cow pen11 1 when different cows are diagnosed with
mastitis. We can see both a larger θd and a larger r cause
a higher infection probability due to more interactions and
faster propagation. Besides the two factors of θd and r, we find
cows located in the same pen are more likely to be infected.
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Fig. 5. Infection probabilities of each cow to suggest screening priorities
when sick cows are unknown (All→ pen x). We set indirect contact distance
threshold θc = 1 and the decay rate ρ = 0.01.
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Fig. 6. Infection probabilities of pen11 1 when other cows are diagnosed with
mastitis (pen x → pen11 1). We set θc = 1 and the decay rate ρ = 0.01.

As demonstrated in both Figure 6a and Figure 6b, the cow
pen11 1 has a higher infection probability if cow pen11 2,
pen11 3 and pen11 4 which shared the same pen with cow
pen11 1, were sick. Note the pen 3 is a dump pen where
cows are located for investigation. The cow pen3 1 was first
located in the pen 3 and then was sent back to the pen 11,
which explained why the cow pen11 1 had a high infection
probability when the cow pen3 1 was sick at the beginning.

E. Real-world SCC Case Study

To demonstrate the effectiveness of the proposed disease
propagation model in real life, we conduct the comparison
of our predictions to ground truth as shown in Somatic cell
count (SCC) tests. Specifically, if the SCC, i.e., the number
of cells present in 1 ml (about a quarter of a teaspoon) of
milk, was larger than 200,000 cells/ml, the cow was regarded
as infected [33]. During our GPS data collection period, the
cow pen8 1 was detected to have mastitis because of its SCC
of 800,000 cells/ml. After data collection, we observed the
SCC of the cow pen8 4 increased from 123,000 to 348,000.
In our model, we assume the pen8 1 is sick at beginning and
calculate the final infection probabilities of all other cows. As
shown in Figure 7, our model suggests the cow pen8 4 for
further screening with the highest priority. The prediction re-
sults are hence consistent with the ground truth, demonstrating
the effectiveness of the proposed overall approach.

VI. CONCLUSION

In this paper, we design, implement, and evaluate an IoT-
based cattle social behavior sensing framework to detect and
prevent mastitis among dairy cows. To make the collected
trajectories more robust and reliable, data fusion techniques
are adopted to merge data from multiple sources, and noisy
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Fig. 7. Infection probabilities of other cows when pen8 1 was diagnosed with
mastitis (pen8 1 → pen x). We set θc = 1 and the decay rate ρ = 0.01.

data are filtered out by GPS hardware-reported errors. Then
we propose configurable directed and weighted social be-
havior graphs, based on which we develop a probabilistic
disease transmission model to forecast and detect cows with
a high infection risk for further screening. Both theoretical
and simulation-based analytics of in-the-field experimental
data demonstrate that the proposed framework is useful and
effective. Finally, additional SCC based tests demonstrate that
our approach achieves consistent results on predicting infected
cows with the ground truth results.
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