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A B S T R A C T

Open data is becoming ubiquitous as governments, companies, and even individuals have the
option to offer more or less unrestricted access to their non-sensitive data. The benefits of
open data, such as accessibility and transparency, have motivated and enabled a large number
of research studies and applications in both academia and industry. However, each open data
only offers a single perspective, and its potential inherent limitations (e.g., demographic biases)
may lead to poor decisions and misjudgments. This paper discusses how to create and use
multiple digital lenses empowered by open data, including census data (macro lens), search logs
(meso lens), and social data (micro lens), to investigate general real-world events. To reveal
the unique angles and perspectives brought by each open lens, we summarize and compare
the underpinning open data from eleven dimensions, such as utility, data volume, dynamic
variability, and demographic fairness. Then, we propose an easy-to-use and generalized open
data driven framework, which automatically retrieves multi-source data, extracts features, and
trains machine learning models for the event specified by answering what, when, and where
questions. With low labor efforts, the framework’s generalization and automation capabilities
guarantee an instant investigation of general events and phenomena, such as disasters, sports
events, and political activities. We also conduct two case studies, i.e., the COVID-19 pandemic
and Great American Eclipse (see Appendix), to demonstrate its feasibility and effectiveness at
different time granularities.

. Introduction

In this section, we first briefly introduce the research background and present the research motivation. Then we highlight our
esearch objectives and contributions.

.1. Background

Open data is playing an increasingly important role in many applications and services for social good, such as disaster
anagement, policy making, public opinion investigation, social innovation, and economic growth (Desouza & Smith, 2014; Janssen,
haralabidis, & Zuiderwijk, 2012; McCombs & Valenzuela, 2020; Napoli & Karaganis, 2010; Ortmann, Limbu, Wang, & Kauppinen,
011).

Using open data in understanding natural and social phenomena is a very common method in various scientific disciplines
ncluding social and behavioral sciences, information science, and political science, as well as media studies and economics.
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Furthermore, open data has become ubiquitous and easily accessible due to the advances of information and communications
technology. Besides traditional open data (e.g., census data), search engines and social media offer new sources of open information
to the public. For example, Google provides a daily search trends index for given keywords and locations based on the aggregated
people’s search behaviors.1 Similarly, Twitter officially allows the harvest of public tweet streams on a large scale.2

1.2. Motivation

It is obvious that both traditional and emerging open data have intrinsic and exclusive features, providing unique perspectives
but suffering from constraints and bottlenecks at the same time. For example, census data covers a large-scale general population
but fails to reflect the monthly and daily changes. Google Trends represent the normalized search interests but not the real search
volumes.3 Social media data, such as tweets, contains heterogeneous information but may introduce demographic biases (Ribeiro,
Benevenuto, & Zagheni, 2020; Wang et al., 2019). These facts make it difficult to ensure a robust and accurate event investigation
if only applying an individual open data source. The choice of open data can have a profound impact on what one can learn and
derive. It is the same with what the folk tale ‘‘The Blind Men and the Elephant’’ teaches us — different perspectives lead to distinct
points of view as the elephant could be recognized as a wall, snake, spear, tree, fan, or rope, depending upon where the blind men
had touched.

When investigating a phenomenon, we think choosing a data source can be seen as choosing a lens for observations in physical
sciences; a telescope and a microscope both allow us to observe, but two very different worlds. Here, we consider lenses that cover
three levels of observations: macro, meso, and micro. A macro lens can allow us to look at a phenomenon from a distance, covering
a large area, but not being very precise. A micro lens, on the other hand, can provide a more specific picture but may be prone to
localized fluctuations. A meso lens falls in between these two. While each of these lenses has its relative pros and cons, scientists
make choices about which one to use when a more meaningful picture emerges through a careful combination of some or all of
these lenses. It seems to be challenging to identify appropriate data source candidates to build these lenses. Thanks to the ubiquitous
open data, it offers an excellent opportunity to define and enable multiple lenses to look at events of interest through different eyes.

However, this notion of integrating multiple open-data lenses in a generalized and effortless way is still under-explored. To
bridge such research gaps, in this article, we summarize and compare the characteristics of different open data on eleven aspects,
including demographic biases, potential ethical concerns, accessibility, and others. Furthermore, we propose a universal and easy-to-
use framework, incorporating multi-source open data retrieval, feature extraction, and the training and fusion of machine learning
models, to investigate events of interest. Specifically, we instantiate census data as the macro lens because it offers an overall
picture of a large area and a large population. Social media data serves as the micro lens to examine the detailed and diverse
features of individuals in a timely manner. The aggregated search engine data, such as Google Trends, is selected as a meso lens
because it usually summarizes daily searching patterns generated by a relatively large group of users. Our framework only requires
users, who can be researchers and practitioners in industry, academia, and government, to provide event keywords, timelines, and
locations by simply answering what, when, and where questions. According to the users’ inputs, our framework retrieves open data
from government websites, search engines, and social media respectively, and then conducts feature engineering and builds models
automatically.

1.3. Research objectives

In this article, we aim to design, implement, and evaluate an easy-to-use open data driven framework that is able to model
general real-world events through the unified open lenses of census data (macro lens), search logs (meso lens), and social data
(micro lens) at different time granularities.

1.4. Contributions

Our approach leads to several major contributions. First, our approach is transparent, collaboration-friendly, and free from
privacy issues. Today, people, media, and governments have become more careful about data privacy (Altman, Wood, O’Brien,
Vadhan, & Gasser, 2015; Goldfarb & Tucker, 2012; Klasnja, Consolvo, Choudhury, Beckwith, & Hightower, 2009; Liu & Carter,
2018), making it hard to access private data even for research purposes. The European Union (EU) enforced General Data Protection
Regulation (GDPR) to protect private data and to prevent illegal private data collections (Voigt & Von dem Bussche, 2017). Under
this scenario, open data, which is easier to obtain and with less potential ethical concerns, becomes more important and sheds
light on investigating any general topics instantly and transparently. In addition, as open data is transparent to everyone, our
framework can facilitate reproducibility and replicability in scientific research. Finally, the proposed framework motivates and
boosts the collaboration of researchers across industries, academics, and governments, because open data can be shared among
diverse agencies without raising ethical concerns and copyright or other legal issues.

Second, the proposed framework’s generalization and automation capabilities guarantee an instant investigation of general events
and phenomena, such as disasters, sports events, and political activities, with low labor efforts. As long as researchers know which

1 https://trends.google.com/trends/?geo=US.
2 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.
3 https://support.google.com/trends/answer/4365533?hl=en.
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event to explore, when and where the event occurs, they can configure the related keywords, time periods, and regions of interest to
launch their studies. For example, to study the 2020 United States presidential election, researchers only need to specify a group of
related keywords (e.g., 2020 election USA), the election day of November 3, 2020, and the entire United States’ geographic scope.
Then our framework sets up the macro (census data), meso (search logs), and micro (social media data) lenses according to the
given keywords, locations, and times. The detailed operations of data retrieval, feature extraction, and model training are hidden as
black boxes without requiring any knowledge or effort from users. We believe our end-to-end approach can facilitate cross-domain
research and benefit a broad scientific community because it lowers the bar of information seeking and deployment of machine
learning models.

Third, instead of relying on a single lens with open data, our framework provides two fusion based (i.e., feature fusion and model
usion based) training mechanisms to unify multiple open-data lenses and merge different viewpoints, allowing researchers and
ractitioners to determine how to fuse the extracted demographic information, search behavior signals, and social media features.
he first method concatenates all features extracted from different open data to train one machine learning model. The other method
rains individual models using each lens independently and then combines them to rebuild an integrated model. The two mechanisms
rovide researchers with flexible options to consolidate perspectives of the studied events from multiple angles. When raw data or
rocessed features from third-party data providers are available, both mechanisms are compatible with those external features.
hen only a model trained on private data is accessible, the model fusion based mechanism is also extensible to integrate it with

ther open data driven individual models.
Lastly, to demonstrate the usability and effectiveness of the proposed framework, we take the COVID-19 pandemic and Solar

clipse of August 21, 2017 (see Appendix) as case studies to estimate how COVID-19 progressed across U.S. states and when the
otal eclipse occurred using individual and collective lenses. To be specific, we use COVID-19 (eclipse) related words as keywords to
ollect multi-source open data, including census data, Google Trends, and Twitter data, in 51 (12) U.S. states from April 4 to May 9,
020 (on August 21, 2017). The census data, as a macro lens, provides an overall demographic distribution pattern, which covers
ll populations across U.S. states. Google Trends data, as a meso lens, indicates the aggregated search interests of the COVID-19
andemic and the solar eclipse from millions of U.S. Google search engine users. Twitter data, as a micro lens, enables to take a
loser look at the individuals’ attitudes and behaviors on COVID-19 and the solar eclipse. Then we adopt the two aforementioned
echanisms to perform data fusion and to train seven types of regression models. For estimating daily confirmed COVID-19 cases

nd deaths, the best performance of models trained through our framework can beat those trained on expert-generated datasets in
ore than one-fourth of all 50 U.S. states and D.C. More importantly, our approach requires fewer labor efforts to collect, preprocess,

nd organize data and less domain knowledge to create data features. For the eclipse case study, we find that multi-lens models
utperform any single-lens-driven models in 33% U.S. states. We believe the proposed framework is generalizable enough to study
wide range of real-world events and social phenomena using publicly available data.

. Related work

For each type of open data incorporated in our framework, we summarize the literature regarding its applications and societal
mpacts. Accordingly, these works can be categorized into three groups: census data, open search logs, and open social media data.
n addition, we highlight the difference between our research work and existing ones.

.1. Census data

Census data usually encompasses a wide range of participants across large geographic areas. According to the U.S. Census
ureau,4 census data can be used in up to 50 ways, such as decision making at all levels of government, forecasting future
ransportation needs for all segments of the population, and directing funds for services for people in poverty. In academia, census
ata is regularly used to represent a population base that samples are meant to represent. It provides a strong default to compare
lternatives against and a baseline that approximations can be based on. As some of the following studies show, it can also be
ombined with other forms of data to offer a more accurate view than either source could alone.

Census data is widely used to ensure representative samples are chosen from the population. For example, Twenge and Joiner
2020) compared prevalence of anxiety and depressive disorders before and during the COVID-19 pandemic based on U.S. Census
ureau-administered national samples. Ogorzalek, Piston, and Puig (2020) merged income survey data with census data to examine
he relationships between local income and vote choice among white voters. Linked with census data, national surveys were used to
onduct a cross-sectional study to explore the relationship between neighborhood characteristics and the engagement in telehealth
mong older adults (Okoye, Mulcahy, Fabius, Burgdorf, & Wolff, 2021). Rahman et al. (2020) measured sentiment analysis using
oth census and Twitter data concerning reopening the country during the COVID-19 pandemic.

Census data also plays an important role in identifying and correcting demographic bias existing in other types of data.
islove, Lehmann, Ahn, Onnela, and Rosenquist (2011) is one of the first to report the demographic differences between Twitter

ata and the real-world population. Jiang, Li, and Ye (2019) studied county-level population biases on Twitter by modeling and
apping the relationships between different demographic/socioeconomic factors and geo-tagged Twitter users. Ribeiro et al. (2020)

nvestigated demographic differences between Facebook users and census data, and proposed correction factors to mitigate the
xisting demographic biases. Cui and He (2021) corrected sampling and socio-demographics bias of social media data by linking
eople’s Twitter account with their Facebook accounts.

4 https://2020census.gov/content/dam/2020census/materials/partners/2019-03/ccc-guide-d-1280.pdf.
3
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2.2. Open search logs

Anonymous data from aggregated search logs is able to portray public interest in a topic during a given period of time; it also
nables the prediction of emerging trends in real life. For example, an increase in searches for ‘‘unemployment benefits’’ would
ndicate a rise in the unemployment rate.

In the past decade, open search logs, such as Google Trends and Baidu Index,5 have been studied extensively in a wide range
of areas, such as tourism demand estimation (Bokelmann & Lessmann, 2019; Feng, Li, Sun and Li, 2019; Höpken, Eberle, Fuchs,
& Lexhagen, 2019), stock price prediction (Liu, Peng, Hu, Dong, & Zhang, 2019; Maneejuk & Yamaka, 2019; Salisu, Ogbonna, &
Adediran, 2021; Wilcoxson, Follett, & Severe, 2020), and unemployment rate and employment growth forecasts (Borup & Schütte,
2020; Mihaela, 2020; Mulero & García-Hiernaux, 2021; Nagao, Takeda, & Tanaka, 2019). In addition, Google Trends search data
can be used in many applications for social good. For example, Chai et al. (2019) proposed an early warning system of suicide by
combining data from Google Trends and features extracted from media reporting on suicide news. Thompson, Wilby, Matthews, and
Murphy (2021) utilized Google Trends as a tool to evaluate flooding in places where formal hydrometeorological data were scarce.

Open search logs are also adopted widely in the field of health and medicine to assess public awareness and monitor the spread
of many diseases, such as COPD (Boehm et al., 2019), measles (Santangelo et al., 2019), and HIV (Mahroum et al., 2019). After the
outbreak of the COVID-19 pandemic, a large amount of literature chose Google Trends as a tool to study its spread from diverse
perspectives, e.g., symptoms, risks, prevention, treatment, and impacts on humans. Cherry et al. (2020) used Google Trends to
track the reduced sense of smell and taste (one typical symptom of COVID-19), determining its association with confirmed COVID-
19 cases. Ayyoubzadeh, Ayyoubzadeh, Zahedi, Ahmadi, and R Niakan Kalhori (2020) used linear regression and long short-term
memory (LSTM) models on data gathered from Google Trends to estimate the number of COVID-19 cases in Iran. Husnayain, Fuad,
and Su (2020) demonstrated that Google Trends could potentially define the proper timing and location of risk communications
for affected populations. Hong, Lawrence, Williams Jr, and Mainous III (2020) relied on Google Trends to measure population-level
interest in telehealth and found the current telehealth capacity could not meet the increased population demand. Google Trends
also enables studies that focus on well-being and mental health caused by lockdowns (Brodeur, Clark, Fleche, & Powdthavee, 2020,
2021) and physical distancing (Knipe, Evans, Marchant, Gunnell, & John, 2020).

2.3. Open social media data

Social media data enables an instant perspective on the public’s immediate reaction to an event or a topic by analyzing users’
online emotions, attitudes, and opinions. Some social media platforms (e.g., Twitter and Weibo) allow anyone to access unprotected
postings by default, generating a great opportunity to collect and explore open social media data. Note that open social media data
may suffer from various biases (e.g., political bias (Chun et al., 2019), media bias (Ribeiro et al., 2018), and gender bias (Usher,
Holcomb, & Littman, 2018)) and noisy data generated by bots (Gilani, Farahbakhsh, Tyson, Wang, & Crowcroft, 2017).

Open social media data has demonstrated its capability and effectiveness in event and topic analysis across many fields, including
politics (AlDayel & Magdy, 2021; Ruz, Henrìquez, & Mascareño, 2020; Stamatelatos, Gyftopoulos, Drosatos, & Efraimidis, 2020),
natural phenomena (Feng et al., 2019), business (Choi, Yoon, Chung, Coh, & Lee, 2020; Ge, Qiu, Liu, Gu, & Xu, 2020), and
disaster management (Lifang, Zhiqiang, Zhang, & Hong, 2020; Ragini, Anand, & Bhaskar, 2018; Zahra, Imran, & Ostermann, 2020).
AlDayel and Magdy (2021) surveyed different methodologies and applications of stance detection on social media. Through Twitter
follower network analysis, Stamatelatos et al. (2020) studied and assessed the possibility of deriving political affinity of particular
entities. Based on five million English eclipse-mentioning tweets, Feng, Lu et al. (2019) discovered trending topics, monitored public
sentiment, and identified human mobility patterns during the 2017 Solar Eclipse that crossed the United States. A recent work (Choi
et al., 2020) conducted a systematic review on open social media analytics-based business intelligence studies. To explore social
media reposting behaviors after natural disasters, Lifang et al. (2020) reported emotional responses of the public and how emotional
factors and influential users affected the number of reposts. Ragini et al. (2018) collected Twitter data concerning floods in the
India–Pakistan regions and proposed classification models to learn the needs of the people during the period of disaster. Zahra et al.
(2020) proposed an approach to identify eyewitness messages on Twitter during disasters automatically.

Similar to open search logs, open social media data makes many studies about the COVID-19 pandemic possible. Jahanbin,
Rahmanian, et al. (2020) combined Twitter data and web news to predict the COVID-19 outbreak. As a platform to express one’s
attitudes and emotions, Twitter generated high-quality data for tracking public perception (Boon-Itt & Skunkan, 2020; Dyer &
Kolic, 2020; Saleh, Lehmann, McDonald, Basit, & Medford, 2021), mental health (Guntuku et al., 2020; Valdez, Ten Thij, Bathina,
Rutter, & Bollen, 2020) and psychological fears (Singh et al., 2020) during the COVID-19 pandemic. Geo-tagged COVID-19 tweets
enabled the investigation of human mobility dynamics (Huang, Li, Jiang, Li, & Porter, 2020). Another important research topic based
on Twitter data is misinformation analysis (Kouzy et al., 2020; Sharma, Seo, Meng, Rambhatla, & Liu, 2020; Singh et al., 2020)
and detection (Al-Rakhami & Al-Amri, 2020; Memon & Carley, 2020). Singh, Bansal et al. (2020) took a first look at the spatio-
temporal dynamics of COVID-19 misinformation spread on Twitter. Memon and Carley (2020) reported COVID-19 misinformed
communities demonstrated more denser and more organized than informed ones. Al-Rakhami and Al-Amri (2020) proposed an
ensemble-learning-based framework for verifying the credibility of a vast number of tweets.

5 https://index.baidu.com/.
4
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Fig. 1. Characteristics of census data, search logs data, and social media data.

.4. Difference between our work and existing ones

This paper adds to the literature on exploring emerging events with open data in the following ways. First, instead of relying on
single (Bangwayo-Skeete & Skeete, 2015; Choi et al., 2020; Park, Lee, & Song, 2017; Zahra et al., 2020) or two (Choy, Cheong,

aik, & Shung, 2011, 2012; Rahman et al., 2020) open data sources, our framework incorporates three open lenses driven by data
t different granularity levels. Second, unlike most existing approaches (AlDayel & Magdy, 2021; Feng, Lu et al., 2019; Ragini et al.,
018; Stamatelatos et al., 2020) focusing on specific tasks, our framework takes versatility and usability into account. In addition,
e provide both feature fusion and model fusion based training mechanisms, whereas most of the existing works (Ayyoubzadeh
t al., 2020; Choi & Varian, 2012; Ge et al., 2020; Park et al., 2017) only consider one of them.

. Methodology

In this section, we first compare the characteristics of three open lenses driven by census data, search logs, and socia media
ata. Then we describe the overview of the proposed multi-lens framework, followed by the detailed designs and implementations
f open data retrieval, feature extraction, and model training.

.1. Characteristic comparisons of open lenses

It is obvious that different types of open data have unique characteristics, demonstrating intrinsic strengths and limitations at
he same time. For example, census data covers a large number of populations and remains unchanged for years. By contrast, the
oogle Trends data changes daily, and Twitter data keeps dynamic in a real-time manner.

To determine the three open lenses’ characteristics for comparison, we first refer to data quality assessment related literature and
eview commonly used data quality dimensions. Specifically, we reduce the 40 traditional quality dimensions for general data (Sidi
t al., 2012), seven for open government data (Vetrò et al., 2016), and 19 for open data from the industry (Hassine & Clément, 2020),
o nine important characteristics by removing trivial dimensions (e.g., data decay) and combining similar dimensions (e.g., timeliness
nd freshness). In addition, we add two new dimensions from the perspective of responsible data, namely ethical issue avoidance
nd demographic fairness, to develop eleven characteristics for comparison in total.

We investigate and summarize the characteristics of the three forms of open data on eleven aspects, as shown in Fig. 1. For
nstance, as census data contain almost all populations within a given region, its aggregation degree is high. Most, if not all, Internet
sers rely on search engines to filter and access information online, which leads to a medium aggregation for search logs data. Only
egistered and active users contribute to social media content, implying a low data aggregation. Accessibility of census data is high
ecause it can be downloaded directly from government websites. But the accessibility of search log data is low because log data
s usually protected, and only anonymous samples or aggregated data are available to the public. The social media data can be
etrieved using official social media APIs, requiring authentication as a developer or researcher, and thus its accessibility is rated
edium. For data diversity, we think social media data have a high amount of diversity because of multimedia content, while the

ther two lenses have a very limited number of data types.

.2. Multi-lens framework overview

Aiming at establishing automatic end-to-end analysis flows for general events, the proposed multi-source open data framework
onsists of four components: event description, open data retrieval, feature extraction, and model training. As shown in Fig. 2, the
irst step is to describe the event under investigation by answering the following three questions: (i) which event it is; (ii) when it
appens; and (iii) where it happens. These questions help determine event relevant keywords, time periods, and locations that guide
5



Information Processing and Management 59 (2022) 102811Y. Feng and C. Shah
Fig. 2. Overview of the multi-lens framework with open data. For an event to be investigated, researchers and practitioners need to determine what it is, when,
and where it occurs by specifying the keywords, time periods, and locations. Three open data sources, i.e., census data, Google search logs, and social media, are
used to harvest data to serve as macro, meso, and micro lenses respectively. For each data source, we conduct feature engineering to extract features. Finally,
feature fusion and model fusion based model training mechanisms are designed to estimate results.

the data collection. Specifically, the demographic data with the inferred time granularity (e.g., months and years) and geographic
granularity (e.g., counties and states) are crawled from government census websites. Given keywords and locations, Google Trends
allows both real-time and archived aggregated search behavioral data retrieval. Similarly, Twitter, on which the posts are publicly
available by default, offers official streaming and search APIs to filter and harvest data by keywords and regions in real-time and
offline manners.

After collecting data, we preprocess Google Trends data and tweets to improve the data reliability and accuracy by correcting
data biases and filtering out bot generated content. Then feature engineering is performed on the three types of open data to
prepare features for model training. For example, we extract population distributions of ages and races from census data, Google
search indices from search logs, and semantic embeddings from tweets. Finally, two model training mechanisms are designed and
implemented: (i) feature fusion based mechanism: training an overall model based on concatenated three lens features; and (ii) model
fusion based mechanism: training a new regression model based on the regressors trained on individual open data independently.
We describe the details of each step in the following subsections.

3.3. Open data retrieval

In this subsection, we present how to collect open data including census data, Google Trends data, and Twitter data. After
collecting data, we preprocess Google Trends data and tweets to improve the data reliability and accuracy by correcting data biases
and filtering out bots generated content.

3.3.1. Census data
As a traditional type of open data, census data is usually maintained and released at governmental websites, where the public can

freely select and download data according to their needs. In our study, we collect the 2019 state population data by characteristics
from the United States Census Bureau.6

3.3.2. Google trends data
Google Trends measures Google search interest in a particular topic in both real-time and offline manners. Given a time, location,

and topic of interest, Google Trends returns a scaled and normalized index, ranging from 0 to 100 based on the topic’s proportion
to all searches on all topics, to represent the popularity of a specified topic.7 Google Trends allows a single search term for one
query. But the proposed framework is flexible to support more than one Google Trends index generated by multiple queries for one
topic by treating each index as a single feature. Note that the index of search trends fails to reflect the actual search volume due
to fluctuations in total search volumes from time to time. The value zero does not indicate no search volumes, but very low search
volumes, i.e., the lowest interest within the examined period, since the data are normalized. Moreover, a value of 100 indicates the
highest interest within the selected time frame.

To mitigate such data inaccuracy caused by normalization, we propose an algorithm to infer the actual search volume of a query
at a location named place from its Google Trends index by adjusting the population-weighted search popularity of place generated
within locations other than place. The main idea is to estimate the total search volumes at the location of place, which serves as
a coefficient to correct the Google Trends index, by observing the search popularity of the term place at other locations. We take
the estimation of search volume of one state in the U.S. as an example to explain how our data correction algorithm works. To be
specific, the search volume 𝑉 𝑡

𝑠 of keyword in state 𝑠 at time 𝑡 is calculated as follows.

𝑉 𝑡
𝑠 = 𝐼 𝑡𝑠 ∗

∑
𝑖≠𝑠 𝐿

𝑡
𝑖𝑠 ∗ 𝑃 𝑡

𝑖
∑

𝑖≠𝑠 𝑃
𝑡
𝑖

(1)

6 https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-detail.html.
7 https://trends.google.com/trends/?geo=US.
6
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where 𝐼 𝑡𝑠 is Google Trends index of keyword in state 𝑠 at time 𝑡; 𝐿𝑡
𝑖𝑠 represents the Google Trends index of the term state 𝑠 in state

𝑖 at time 𝑡; 𝑃 𝑡
𝑖 is the population of state 𝑖 at time 𝑡; and the  is the set of all 50 states and the District of Columbia. For example,

we infer the search volume of Super Bowl in Alabama on February 2, 2020. We first retrieve the Google search indices of the term
Alabama from other 49 states and the District of Columbia on February 2, 2020. Then, we aggregate all these search indices of
Alabama by normalizing them based on state populations. Finally, we use the above normalized value as a coefficient to correct the
daily search index of Super Bowl in Alabama. In this paper, we adopt pytrend,8 a Python-based Google Trends API tool, to collect
wo types of daily Google Trends data (i.e., 𝐼 𝑡𝑠 and 𝐿𝑡

𝑖𝑠 in Eq. (1)).

.3.3. Twitter data
Twitter is chosen as the social media open data source in our study for the following reasons. First, with 192 million daily active

sers,9 and 500 million newly generated tweets per day10 Twitter is one of the most widely used social networks worldwide. Its
opularity makes it a good crowdsourcing platform to collect people’s first-hand data even from sparsely populated regions. Second,
ifferent from many other social networks, Twitter provides official streaming APIs11 allowing developers to specify keywords and
ocations to sample and collect real-time data. The APIs capture and save tweets as JSON files, which contain an attribution of
ocation indicating where tweets are posted. Thus, we can parse and extract tweet locations of interest for further analysis. Third,
weets are visible to everyone by default, reducing potential ethical issues and privacy violations in data collection.

Regarding the Twitter data, it is reasonable and necessary to clean the collected tweets because malicious bots generate a large
mount of noisy data. Following Ljubešić and Fišer (2016), two types of Twitter accounts are regarded as bots in our study. The first
ne is the account that tweets very frequently and constantly for a long time, such as posting hundreds of tweets per day for months
ithout stopping. The other type of bots demonstrates a regular and periodic tweeting behavior, e.g., tweeting every 30 min or

hree hours. We believe the detection and removal of bots will make it more precise to crowdsource human opinions and attitudes
owards the event under study.

In addition to removing bots, many rudimentary natural language preprocessing techniques are deployed on raw data to clean up
essy tweets. Specifically, we first tokenize raw tweets into individual components for further processing. Then we fix unintentional

yping errors like typos and misspellings in raw tweets. Next, we make tweets more structured by removing redundant information
uch as @mentions, #hashtags, URLs, non-alphabetic words, and stop words. Finally, we lemmatize tweeting words to reduce them
o their base forms, reducing the total number of unique words for further analysis.

.4. Feature engineering

It is non-trivial to design and extract features of each lens because raw open data, especially social media data, is usually not
ell-structured and unsuitable for training machine learning models.

.4.1. Census data
For census data, we mainly concentrate on demographic features, including population distributions with respect to ages and

aces. Take the state-level census data in the U.S. as an example. We reorganize the raw state population information, which is
ownloaded from the United States Census Bureau,12 by both age and ethnicity. We project each state population into 18 five-year
ge groups ranging from under 5 years to 85 years and over to reduce data dimensions. Also, we aggregate state populations by
ace and produce six more population features: White, Black or African American, American Indian and Alaska Native, Asian, Native
awaiian and Other Pacific Islander, and Two or More Races. Thus, we extract 24 population features (18 age features and 6 race

eatures) from census data for further model training.

.4.2. Google trends data
As Google Trends data is well-structured and low-dimensional, we directly take the estimated search volume using Eq. (1) as

he feature for model training. Note that besides Google Trends information, Eq. (1) has also incorporated population data.

.4.3. Twitter data
Social media data usually needs extensive feature engineering to convert unstructured information into meaningful features.

oth explicit and implicit Twitter features are constructed in the proposed framework. We take the most straightforward feature,
he count of tweets posted in given periods and regions, as the explicit feature.

For implicit features, we consider sentiment and semantic distributions of tweets collected during the same time slot. Sentiment
eatures mainly consist of emotion polarity and subjectivity of tweets. For each tweet, we use TextBlob13 to calculate its polarity
a float within the range [−1.0, 1.0]) and subjectivity (a float within the range [0.0, 1.0]) scores. Then we build two distributions of

8 https://pypi.org/project/pytrends/.
9 https://s22.q4cdn.com/826641620/files/doc_financials/2020/q4/FINAL-Q4’20-TWTR-Shareholder-Letter.pdf.

10 https://www.dsayce.com/social-media/tweets-day/.
11 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.
12 https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-detail.html.
13 https://textblob.readthedocs.io/en/dev/.
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Table 1
Fine-tuned parameters for regression models.
Models Parameters

Bayesian ridge alpha_1, alpha_2, lambda_1, lambda_2, normalize
Ridge alpha, normalize
Lasso LARS alpha, normalize
Random Forest n_estimators, bootstrap
SVR kernel, C, epsilon
Linear fit_intercept, normalize
K-Neighbors n_neighbors, weights

sentiment polarity and subjectivity to represent implicit feature values by binning continuous emotion scores into discrete buckets,
respectively.

We create a word embedding representation of aggregated tweets to construct semantic features. After removing mentions,
ashtags, URLs, and stop words, we tokenize and lemmatize tweets. Then we conduct term frequency–inverse document frequency
TF–IDF) to figure out the important tweet tokens with a TF–IDF weight larger than a given threshold. On these tokens, we adopt
he word2vec GloVe model (Pennington, Socher, & Manning, 2014), which is pre-trained on 2 billion tweets and 27 billion tokens,
o infer a word embedding vector. Finally, we sum up TF–IDF weighted GloVe word embeddings of the selected tweet tokens to
epresent the semantic feature values.

.5. Model training and evaluation metrics

We propose two model training mechanisms to incorporate insights from multiple open data sources. Our framework also
upports automatic parameter tuning to train machine learning models.

.5.1. Two model training mechanisms
Feature fusion based model training mechanism concatenates all features extracted from multiple open-data lenses to train an

ndividual model. It is intuitive to merge and represent the multiple open-data perspectives through the combination of these
eatures. We standardize all feature values before applying regression or classification models due to varying scales in different
pen lenses.

Rather than combining features of multi-source open data, model fusion based training mechanism combines models trained
n single-source open data. The reason why we design such a training procedure is twofold. First, the best fitting model for each
pen lens can be found independently, implying more flexibility in model selection. Also, it becomes easy to incorporate external
odels pre-trained on third-party data. For example, we can extend our framework by integrating models trained on Microsoft Bing
on-public search logs, without requesting access to the company’s data or threatening customer privacy. If the research question
s formatted as a regression problem, we take ideas of meta-analysis to estimate the final output. If it is a classification question,
ajority voting ensemble methods can be used to determine the final class label.

.5.2. Model parameter tuning
The two proposed mechanisms are flexible to support automatic parameter tuning when training regression and classification

odels. For a regression-based research problem, we train and evaluate the following regression models: Bayesian ridge regression,
idge regression, lasso LARS regression, random forest regression, Support Vector regression (SVR), linear regression, and k-neighbors
egression. For each regression, we tune their parameters to find the best parameter combination with five-fold cross validation
utomatically. Because we implement all these regression models based on the Python scikit-learn machine learning library, we
ollow the parameter names in scikit-learn functions and list the tuned parameters of each regression model in Table 1. Similar
arameter tuning is also supported for a classification-based research question.

.5.3. Evaluation metrics
The proposed framework is compatible with various evaluation metrics to measure the performance of trained regression and

lassification models. For regression models, metrics such as R Square (𝑅2), Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE) can be selected to calculate the accuracy of models. To evaluate classification models, many
evaluation options, such as Accuracy, Recall, F1-score, Categorical Cross-Entropy, and Area under the ROC Curve (AUC) (Green,
Swets, et al., 1966; Hanley & McNeil, 1982) are available.

4. Evaluation

In this section, we take the COVID-19 pandemic as a case study to demonstrate the feasibility and effectiveness of our open
data driven multi-lens framework. Another case study of the Solar Eclipse of August 21, 2017 is reported in Appendix B. We also
qualitatively compare the proposed framework with existing works from six dimensions: data fusion, model fusion, timeliness,
8
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Fig. 3. The number of daily COVID-19 cases and deaths across U.S. states. We show the top 10 states with the most cases and deaths from April 4, 2020 to
May 9, 2020 respectively. Among them, New York state and New Jersey reported most COVID-19 cases and deaths during that time.

4.1. COVID-19 case study

This subsection presents how to use the proposed framework to estimate COVID-19 daily cases and deaths in 50 U.S. states and
.C. in 2020.

.1.1. Background and problem statement
As the COVID-19 pandemic swept over the world, it has had a widespread impact on people’s daily lives and the whole society

Feng & Zhou, 2020; Singh & Singh, 2020; Torales, O’Higgins, Castaldelli-Maia, & Ventriglio, 2020). In our case study, we train
egression models using open data to estimate the daily COVID-19 confirmed cases and deaths in U.S. states. The number of cases
nd deaths can be further used to calculate the case fatality ratio (deaths over cases), which is important to explore how the course
f the pandemic progresses according to Johns Hopkins University14 and World Health Organization.15 We choose The New York

Times COVID data repository16 as the ground truth of reported COVID-19 cases and deaths. The top 10 states with most confirmed
cases and deaths from April 4, 2020 to May 9, 2020 are illustrated in Figs. 3(a) and 3(b) respectively.

4.1.2. COVID dataset
We collect the census data from United States Census Bureau websites. We adopt pytrends17 to collect two types of daily Google

Trends data (i.e., 𝐼 𝑡𝑠 and 𝐿𝑡
𝑖𝑠 in Eq. (1)) across U.S. states from April 4, 2020 to May 9, 2020. Specifically, we use COVID and each

state’s name as keywords to collect the daily COVID Google Trends indices in all U.S. states. Then we calculate the daily search
volumes of COVID using Eq. (1) for each state and regard them as feature values.

We use Twitter’s Streaming APIs to collect geo-tagged COVID-19 related tweets across U.S. states. Considering people may pick
up diverse words when tweeting the COVID-19 pandemic, we use a set of keywords, including COVID19, COVID–19, coronapocalypse,
Coronavid19, Covid_19, COVID-19, coronavirus, wuhan, corona, and nCoV, to sample related tweets. Inspired by Ljubešić and Fišer
(2016), Twitter accounts that generate more than 1500 tweets (tweeting around 50 times per day in our dataset) are recognized
as bots. In addition, for users having more than 300 collected postings in our dataset, we analyze the time interval between two
successive tweets. If the three most popular posting intervals dominate more than 90% of their all intervals, we treat such a user as
a bot. After removing bots, we get 340,757 tweets in total across 50 states and D.C. from April 4, 2020 to May 9, 2020. The number
of tweets collected in each state is summarized in Fig. 4. Note that some confounding variables (e.g., weather and local hospital
capacity) that are not covered by the collected open data may also affect the daily COVID-19 cases and deaths.

14 https://coronavirus.jhu.edu/data/mortality.
15 https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-covid-19.
16 https://github.com/nytimes/covid-19-data.
17 https://pypi.org/project/pytrends/.
9
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Fig. 4. The number of collected COVID-19 tweets in each state (April 4–May 9, 2020).

4.1.3. Model training and testing
Following Section 3.4, we extract features from multi-source open data as input, and treat the number of daily COVID-19 cases

or deaths as output, to train and evaluate regression models. We split the dataset into 80% training and 20% testing data randomly
to calculate the normalized RMSE.

𝑁𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̂)

2

𝑛

𝑦̄
(2)

where 𝑛 is the number of testing samples; 𝑦𝑖 is the ground truth; 𝑦̂ is the estimated value by regression models; and 𝑦̄ is the mean
of all 𝑦𝑖.

4.1.4. Estimating daily COVID-19 cases and deaths in California
We take California as an example to demonstrate the estimation of daily confirmed COVID-19 cases and deaths using our

framework. We summarize the normalized RMSE results of estimating the daily COVID-19 cases and deaths in California between
April 4, 2020 and May 9, 2020 with different regression models and features in Fig. 5. Besides California, we illustrate the
performance of estimating daily COVID-19 cases and deaths in moderate and least populous states, which demonstrate higher
normalized RMSEs during the first wave of COVID-19, in Appendix A.

For both COVID-19 daily case and death estimations, we evaluate the performance of feature fusion based (see Figs. 5(a) and
5(c)) and model fusion based (see Figs. 5(b) and 5(d)) training mechanisms. The former merges features extracted from multi-source
data to train models, while the latter concatenates the outputs of models that are trained on each open data independently as the
new input features to train a final model. As mentioned in Section 3.5.2, we cover seven regression models in our experiments. For
each regression model, we show their performance on the individual lens and merged lenses.

The first bar from the left of each regression model represents the results based on an expert-generated COVID-19 search trends
symptoms dataset,18 which includes aggregated, anonymized search trends for more than 400 symptoms, signs and health conditions,
such as cough, fever and difficulty breathing. The rightmost four bars demonstrate the merged multi-source open data, i.e., census
data, Google Trends data, and Twitter data, with various feature combinations. The rest demonstrate results of single-sourced open
data with an individual feature. For Twitter data, we evaluate its performances with features of tweet counts, sentiment scores, and
semantic embeddings (word2vec) respectively.

As expected, different features lead to varying accuracies even with the same regression models to investigate the same event (see
the grouped bars labeled with the same regression models). In addition, the same feature demonstrates inconsistent performances
using different regression models. For example, in Fig. 5(b), the feature combination of census data, Google Trends, and Twitter
count, outperforms others on the k-neighbors regression, but this does not hold true for the other six models. We also observe that
some features demonstrate relatively high normalized RMSEs and standard deviations when training regression models (see the
blank bars, e.g., the merged features on the linear regression in Figs. 5(a) and 5(c)).

4.1.5. Individual lens versus merged lens
Since different types of open data have unique but incomplete characteristics, we intend to incorporate them together to

investigate the event of interest. We think multiple open data lenses are more likely to reflect stable and real COVID-19 pandemic
statuses than a single lens. Fig. 6 illustrates the open data that achieves the best performance when estimating daily COVID-19 cases
and deaths with the two model training mechanisms in each U.S. state. Feature fusion based training mechanism demonstrates that
merged lenses have a higher regression accuracy in 21 out of 50 states and D.C. for daily COVID-19 case and death estimations
respectively (see Figs. 6(a) and 6(c)). For model fusion based training mechanism, the merged lens outperforms single lenses in 21
states and 14 states for estimating daily COVID-19 cases and deaths respectively (see Figs. 6(b) and 6(d)).

18 https://pair-code.github.io/covid19_symptom_dataset/?country=NZ.
10
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Fig. 5. Regression results of daily COVID-19 cases and deaths in California with different model training mechanisms and feature fusions. The most left bar
colored as red) represents the results based on expert knowledge. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

.1.6. Expert knowledge versus open lenses
To show the proposed framework’s effectiveness, we compare the best normalized RMSEs achieved by open lenses with that by

n expert-generated dataset that includes more than 400 fine-tuned COVID-19 symptoms and related values. Using feature fusion
ased training mechanism, the best performance of open lenses can beat expert knowledge in 15 and 18 out of 50 states and D.C.
or daily COVID-19 case and death estimations respectively (see Figs. 7(a) and 7(c)). For model fusion based training mechanism,
11
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Fig. 6. Comparison of single and merged lenses in 50 U.S. states and the District of Columbia. Each state is colored by the lens that achieves the best performance.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Qualitative comparison with existing works. ✓(Yes), ✗(No), ✛(Somewhat)
Approach Data fusion Model fusion Real-time Geo-aware Generalized Automatic

Ogorzalek et al. (2020) ✓ ✗ ✗ ✓ ✗ ✛

Rahman et al. (2020) ✓ ✗ ✓ ✓ ✓ ✓

Thompson et al. (2021) ✗ ✗ ✓ ✓ ✛ ✓

Ayyoubzadeh et al. (2020) ✗ ✓ ✓ ✛ ✓ ✓

Feng, Lu et al. (2019) ✗ ✗ ✓ ✓ ✓ ✓

Singh, Singh et al. (2020) ✗ ✗ ✛ ✛ ✓ ✓

Multi-lens framework ✓ ✓ ✓ ✓ ✓ ✓

the open lenses perform better in 19 states and 16 states for estimating daily COVID-19 cases and deaths respectively (see Figs. 7(b)
and 7(d)). We think our findings are of significant importance because our open data is transparent and public. Also, our open lenses
are able to be used in real time and enable a timely estimation of the event. In addition, our findings demonstrate that the merged
open data lenses are valuable and competitive with manually created datasets (here, Google’s COVID-19 symptoms data with 400
fine-tuned features). Most importantly, they also require less labor effort than the human-generated datasets, making it practical to
analyze new events as they emerge.

4.2. Qualitative comparison with existing works

In this subsection, we compare the proposed multi-lens framework with existing studies qualitatively. To be specific, we
investigate six dimensions, namely data fusion, model fusion, timeliness, geo-awareness, generalizability, and automation, across
existing studies and our framework, as shown in Table 2. Survey data based studies (e.g., Ogorzalek et al., 2020) are more likely
to suffer from poor timeliness, low generalizability and automation. We also notice that not all works built upon Google Trends
and social media data, such as Ayyoubzadeh et al., 2020 and Singh, Singh et al., 2020, take fine-grained locations explicitly. Many
existing works, like Thompson et al., 2021 and Feng, Lu et al., 2019, do not take data fusion and model fusion into account.
In contrast, the proposed multi-lens framework unifies diverse perspectives of multiple open data sources and offers timely and
automatic investigations for general events and topics.

5. Discussion and implications

In this section, we first present the limitations on the accessibility of open data incorporated in our framework. Then we discuss
our framework’s implications in cross-disciplinary research and its compatibility with the models pre-trained on private datasets.
12
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Fig. 7. The normalized RMSE difference of expert knowledge and open lenses in 50 U.S. states and the District of Columbia. Each state is colored by a RMSE
range and the green color indicates open lenses outperforms expert knowledge. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.1. Limitation on the accessibility of search logs and social media data

As commercial search engines, e.g., Google Search, and Microsoft Bing, harvest most search logs, it is difficult for outsiders to
access huge amounts of desired search data due to business and customer privacy concerns. Therefore, the proposed framework
has to rely on rough and low-precision search data aggregated and released by these companies. Although we have proposed an
algorithm to improve the data quality of search logs, our framework will work more effectively and robustly if precise search data,
such as Google search volumes, are available. Unlike Twitter, many other popular social networking platforms, e.g., Facebook, and
Instagram, do not provide official streaming APIs to sample platform-wide social media content.

Their underlying business models are different from that of Twitter, which determines their generated social media data is not
shared with the public. However, besides Twitter, if other social media data sources (even if they are anonymous and aggregated)
are available, our framework can mitigate the sparsity of data in least-densely populated regions, promising a more generalized
estimation and prediction of the events under investigation.

5.2. Applications and implications in cross-disciplinary research

The openness and high usability of the proposed framework make it easy to be adopted in cross-disciplinary research studies.
First, all data used in the framework is open data that is accessible to researchers with very low efforts. Second, the entire framework,
including data collection, feature extraction, and model training, is open-source, allowing researchers to redevelop, revise, and
customize each component according to their needs. Third, it is easy-to-use for those who have minimal programming skills because
they only need to answer the three W’s questions (what, when, and where) of an event to be investigated. Then our open-source
data collecting scripts will automatically download the corresponding census data, search logs, and social media data. When the
data is ready, feature extractions and model training in the following steps can also be performed automatically.

We think the proposed framework benefits a broad research community from different disciplines and domains. For example,
researchers in public transportation can take advantage of our framework to explore the emerging transportation systems,
e.g., shared dockless electric scooter, in given cities and time periods. The presented framework can also be used to monitor and
analyze time-sensitive social and political events, for example, the 2020 United States presidential election. Recall that Google
Trends data is updated daily and Twitter data can be retrieved in a real time manner. Neither of the two examples require intensive
efforts in collecting data nor huge budgets.
13
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5.3. Compatibility with pre-trained models using private datasets

In many scenarios, it is impractical to call for companies and organizations to make their raw data open access, even for research
urposes. Instead, it is more acceptable and reasonable to inquire whether they can release pre-trained models minimizing the
isk of customers’ personal information leak. On the one hand, the raw data never leaves company devices, and the access to
he raw information is restricted to authorized personnel only. On the other hand, companies can design and provide Application
rogramming Interface (API) services allowing external users to submit queries to retrieve pre-trained model outputs regarding
pecified time periods and regions.

We can integrate such a pre-trained model into the proposed framework by treating it as an individual model in the model fusion
ased training mechanism (see Fig. 2). Along with other models trained independently on open data, we concatenate their outputs
s the new input features to train a final model. Thus, the lens learned from private data is merged seamlessly into the existing
orkflow, making our approach more robust at no cost of privacy violations and ethical issues. From another perspective, agencies

hat hold exclusive data can also leverage our framework partially or entirely to incorporate open lenses into their internal model
raining operations.

. Conclusion

Open data is playing an increasingly important role in many applications and services for social good, such as decision making
nd public opinion investigation. The choice of open data can have a profound impact on what one can learn and derive. Choosing
data source can be seen as choosing a lens for observations in physical sciences; a telescope and a microscope both allow us to

bserve, but two very different worlds. Here, we consider lenses that cover three levels of observations: macro, meso, and micro. A
acro lens can allow us to look at a phenomenon from a distance, covering a large area, but not being very precise. A micro lens,

n the other hand, can provide a more specific picture but may be prone to localized fluctuations. A meso lens falls in between these
wo. While each of these lenses has relative pros and cons, scientists make choices about which one to use when a more meaningful
icture emerges through a careful combination of some or all of these lenses.

Although many studies integrating multi-source open data have been presented continuously over the past decade, most of
hem focus on less than three open data sources and are not designed for effortlessly investigating universal events. To bridge such
esearch gaps, in this article, we summarize and compare the characteristics of different open data on eleven aspects, including
emographic biases, potential ethical concerns, accessibility, and others. Furthermore, we propose a universal and easy-to-use
ramework, incorporating multi-source open data retrieval, data feature extraction, and machine learning model training and fusion,
o investigate events of interest. Specifically, our framework only requires users, who can be researchers and practitioners in
ndustry, academia, and government, to provide event keywords, timelines, and locations by simply answering what, when, and
here questions. According to the users’ inputs, our framework retrieves open data from government websites, search engines, and

ocial media respectively, and then conducts feature engineering and builds models automatically. We take the COVID-19 pandemic
a social phenomenon with a time granularity of one day) and Solar Eclipse of August 21, 2017 (a natural phenomenon with a time
ranularity of 30 min) as case studies to demonstrate the usability and effectiveness of the proposed framework.

RediT authorship contribution statement

Yunhe Feng: Conceptualization, Methodology, Software, Data curation, Validation, Writing – original draft. Chirag Shah:
Conceptualization, Methodology, Supervision, Writing – original draft, Writing – review & editing.

Appendix A. Estimating daily COVID-19 cases and deaths in less populous states

Besides the most populous state, i.e., California, we illustrate regression results of estimating daily COVID-19 cases and deaths
in two additional states – Kentucky and Wyoming – with smaller populations. Kentucky ranks as 26th most populous state among
50 U.S. states and D.C. and Wyoming is the least populous state. The results of Kentucky and Wyoming are illustrated in Figs. A.9
and A.8 respectively.

Appendix B. Eclipse case study

This subsection presents a case study of Total Solar Eclipse 2017 to investigate natural phenomena. It implies the potential usage
14
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Fig. A.8. Regression results of daily COVID-19 cases and deaths in Kentucky with different model training mechanisms and feature fusions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
15
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Fig. A.9. Regression results of daily COVID-19 cases in Wyoming with different model training mechanisms and feature fusions. We did not train regression
models for daily deaths in Wyoming because only seven COVID-19 deaths were reported during April 4, 2020 and May 9, 2020.

Fig. B.10. Path of the eclipse shadow across the U.S.19; The narrow track is the path of totality; small blue dots inside the narrow track represent cities. The
12 states where total solar eclipse was visible are highlighted (Feng, Lu et al., 2019). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

B.1. Background and problem statement

The coast-to-coast natural phenomenon of Solar Eclipse of August 21, 2017 crossed the continental U.S. (see Fig. B.10), attracting
wide attention from the entire continent. According to The Washington Post,20 nine in ten adults in the U.S. watched this total eclipse.
We adopt the proposed framework to estimate when the totality occurred in 12 states lying within the path of totality.

We formulate the estimation of solar totality occurring time (with a time granularity of 30 min) as a regression problem. The
open data within half an hour, e.g., 8:00 am–8:30 am and 9:30 am–10:00 am, are aggregated together. Take Oregon as an example.
The solar totality was visible in Oregon between local time 10:15am and 10:27am on August 21, 2017. Thus we assign a 𝑦 = 0
to the time slot 10:00 am–10:30 am for Oregon representing the totality occurred within this time slot, 𝑦 = 1 to the time slot
9:30 am–10:00 am representing totality would occur 30 min later, and 𝑦 = 2 to the time slot 9:00 am–9:30 am representing totality
would occur one hour (2 ∗ 30 min) later. Besides the totality time slot, we consider 14 such time slots for each state.

19 http://robslink.com/SAS/democd94/eclipse_2017.htm.
20 https://wapo.st/2Ok4G2D.
16
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Fig. B.11. The number of eclipse-mentioned tweets in each state (August 21, 2017).

B.2. Eclipse dataset

As mentioned in Section 3.3.1, we download official census data from United States Census Bureau websites. We collect two
types of hourly Google Trends data for states of interest. The first type of data is the Google Trends indices with a keyword of
eclipse, i.e., 𝐼 𝑡𝑠 in Eq. (1). The other type is the 𝐿𝑡

𝑖𝑠, the Google Trends indices inside state 𝑖 with a keyword of state s. Then we
estimate the search volume using Eq. (1).

We use Twitter’s Streaming APIs to crawl English tweets containing keyword eclipse from the entire duration of the event (from
Aug. 20, 2017 to Aug. 24, 2017). Following the bot detection approach (Ljubešić & Fišer, 2016), we conceived the two types of
Twitter users as bots: (i) those who post more than 100 eclipse-tagged tweets per day; (ii) those who post more than 25 eclipse-tagged
tweets per day and the top three most frequent posting intervals cover at least their 90% tweets. In our study, we focus on 8183
tweets posted from 12 states within 15 half an hour time slots before and during the totality time. The state-wise tweet counts are
illustrated in Fig. B.11.

B.3. Model training and testing

We extract features from census data, Google Trends data, and Twitter data, as described in Section 3.4. The corresponding
ground truth is set as mentioned in Appendix B.1. When training and evaluating regression models, we split the dataset into 80%
training and 20% testing data randomly to calculate the normalized RMSE. We repeat the training process 1000 times to calculate
the average normalized RMSE and its standard deviation.

B.4. Eclipse totality forecast in Oregon

Both feature fusion and model fusion based training mechanisms (see Fig. 2) are flexible to adopt diverse regression models
including Bayesian ridge regression, ridge regression, Lasso LARS regression, support vector regression (SVR), linear regression,
random forest regression, and k-neighbors regression. We summarize the normalized RMSE results of estimating the eclipse totality
in Oregon between 3:00 am and 10:30 am on August 21, 2017 with different regression models and features in Fig. B.12. To make
the figures more readable, the bars with a standard deviation larger than 2 are not plotted.

It is reasonable that the census lens demonstrates a poor performance on different regression models adopted in the two model
training mechanisms because it always keeps unchanged from time to time. We can also observe that the social data lens empowered
by Twitter sentiment shows a high normalized RMSE, indicating it contributes little to the model’s precision. In contrast, Twitter
count and two merged lenses (census data-Google Trends-Twitter count and census data-Google Trends-Twitter count-Twitter word
embedding) perform very well.

B.5. Individual lens versus merged lens

Since different types of open data have unique but incomplete characteristics, we intend to incorporate them together to
investigate the event of interest. We think multiple open data lenses are more likely to be stable and accurate than a single lens.
Fig. B.13 highlights open lenses achieving the best performance in the 12 U.S. states lying within the path of totality. Feature fusion
and model fusion based training mechanisms demonstrate that merged lenses achieve a higher regression accuracy in 33.33% and
41.67% states respectively. Google Trends lens performs the best in 58.33% and 50% states in Figs. B.13(a) and B.13(b). Note that
Google Trends lens also incorporates the census data when inferring its search volume from the search index.
17
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Fig. B.12. Regression results of eclipse totality forecast in Oregon with different model training mechanisms and feature fusions.

Fig. B.13. Comparison of single and merged lenses in 12 states on the path of the eclipse totality. Each state is colored by the lens that achieves the best
performance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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