''' Code me a large language model in python. ''' import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM, Embedding # Prepare input sequences data = "the quick brown fox jumps over the lazy dog" tokens = data.split() vocab_size = len(set(tokens)) seq_length = 3 sequences = [] for i in range(seq_length, len(tokens)): seq = tokens[i-seq_length:i] sequences.append(' '.join(seq)) # Prepare data for training X = [] y = [] for seq in sequences: X.append(seq[:-1]) y.append(seq[-1]) # Convert data to numerical form X_num = np.zeros((len(X), seq_length)) y_num = np.zeros(len(y)) word_to_num = {} num_to_word = {} idx = 0 for word in set(tokens): word_to_num[word] = idx num_to_word[idx] = word idx += 1 for i in range(len(X)): for j in range(seq_length): X_num[i][j] = word_to_num[X[i].split()[j]] y_num[i] = word_to_num[y[i]] # Build the model model = Sequential() model.add(Embedding(vocab_size, 50, input_length=seq_length)) model.add(LSTM(100, return_sequences=True)) model.add(LSTM(100)) model.add(Dense(100, activation='relu')) model.add(Dense(vocab_size, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam') # Train the model model.fit(X_num, y_num, epochs=500) # Generate new text seed_text = "brown fox jumps" generated_text = seed_text for i in range(20): x = np.zeros((1, seq_length)) for j in range(seq_length): x[0][j] = word_to_num[seed_text.split()[j]] prediction = model.predict(x, verbose=0) idx = np.argmax(prediction) word = num_to_word[idx] generated_text += ' ' + word seed_text = seed_text + ' ' + word seed_text = ' '.join(seed_text.split()[1:]) print(generated_text)