''' how to write a code in Python to fit dust SED using a modified blackbody model? ''' import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit # Define the modified blackbody function def modified_blackbody(wavelength, T, beta, nu0, A): """ Modified blackbody function to fit a dust SED. Parameters: wavelength: array of wavelengths in microns T: dust temperature in Kelvin beta: dust emissivity index nu0: reference frequency in Hz A: amplitude of the dust SED """ nu = 3e8 / (wavelength * 1e-6) # convert wavelength to frequency in Hz term1 = (nu / nu0)**(beta+1) term2 = np.exp(2.8e-11 * nu0 / T) - 1 return A * term1 * term2 # Load the dust SED data wavelength, flux, error = np.loadtxt('dust_sed.txt', unpack=True) # Plot the dust SED data plt.errorbar(wavelength, flux, yerr=error, fmt='o', label='data') plt.xlabel('Wavelength (microns)') plt.ylabel('Flux (Jy)') plt.xscale('log') plt.yscale('log') # Initial guess for the fit parameters T_guess = 20 # Kelvin beta_guess = 1.5 nu0_guess = 2.5e12 # Hz A_guess = 1e-6 # Jy # Fit the modified blackbody model to the dust SED data using curve_fit popt, pcov = curve_fit(modified_blackbody, wavelength, flux, sigma=error, p0=[T_guess, beta_guess, nu0_guess, A_guess]) # Print the best-fit parameters and their errors print('T = {:.2f} +/- {:.2f} K'.format(popt[0], np.sqrt(pcov[0, 0]))) print('beta = {:.2f} +/- {:.2f}'.format(popt[1], np.sqrt(pcov[1, 1]))) print('nu0 = {:.2e} +/- {:.2e} Hz'.format(popt[2], np.sqrt(pcov[2, 2]))) print('A = {:.2e} +/- {:.2e} Jy'.format(popt[3], np.sqrt(pcov[3, 3]))) # Plot the best-fit model and the data wavelength_model = np.logspace(np.log10(wavelength.min()), np.log10(wavelength.max()), 100) flux_model = modified_blackbody(wavelength_model, *popt) plt.plot(wavelength_model, flux_model, label='model') plt.legend() plt.show()