''' We're writing Python using NumPy now. Let special value of a matrix mean the its determinant plus its largest eigenvalue. Write a function in Python that takes a list of matrices as input and returns the position of the matrix with the smallest special values ''' import numpy as np def find_matrix_with_smallest_special_value(matrices): """ Finds the matrix with the smallest special value in a list of matrices. The special value of a matrix is defined as the determinant plus the largest eigenvalue. """ smallest_special_value = float('inf') smallest_special_value_matrix_index = None for i, matrix in enumerate(matrices): det = np.linalg.det(matrix) eigenvalues = np.linalg.eigvals(matrix) largest_eigenvalue = np.max(eigenvalues) special_value = det + largest_eigenvalue if special_value < smallest_special_value: smallest_special_value = special_value smallest_special_value_matrix_index = i return smallest_special_value_matrix_index