''' Implement the Quantum Optimization Algorithm that solves the Travelling Sales Man problem in Python ''' pip install numpy networkx qiskit import numpy as np import networkx as nx from qiskit import Aer, execute from qiskit.aqua.algorithms import QAOA from qiskit.aqua.components.optimizers import COBYLA from qiskit.circuit.library import TwoLocal # Generate a random graph with n nodes n = 4 graph = nx.Graph() graph.add_nodes_from(range(n)) edges = [(i, j, np.random.randint(1, 10)) for i in range(n) for j in range(i+1, n)] graph.add_weighted_edges_from(edges) # Define the cost function def cost_function(x, graph): cost = 0 for i in range(len(x)): for j in range(i+1, len(x)): if x[i] == 1 and x[j] == 1: cost += graph[i][j]['weight'] return cost # Define the QAOA circuit p = 1 # number of layers optimizer = COBYLA() qaoa = QAOA(optimizer=optimizer, p=p, initial_state=None, mixer=None, cost_fn=cost_function, quantum_instance=Aer.get_backend('statevector_simulator')) # Run the QAOA algorithm result = qaoa.compute_minimum_eigenvalue(graph) # Print the results print(result)